33 research outputs found

    GEM-CEDAR Study of Ionospheric Energy Input and Joule Dissipation

    Get PDF
    We are studying ionospheric model performance for six events selected for the GEM-CEDAR modeling challenge. DMSP measurements of electric and magnetic fields are converted into Poynting Flux values that estimate the energy input into the ionosphere. Models generate rates of ionospheric Joule dissipation that are compared to the energy influx. Models include the ionosphere models CTIPe and Weimer and the ionospheric electrodynamic outputs of global magnetosphere models SWMF, LFM, and OpenGGCM. This study evaluates the model performance in terms of overall balance between energy influx and dissipation and tests the assumption that Joule dissipation occurs locally where electromagnetic energy flux enters the ionosphere. We present results in terms of skill scores now commonly used in metrics and validation studies and we can measure the agreement in terms of temporal and spatial distribution of dissipation (i.e, location of auroral activity) along passes of the DMSP satellite with the passes' proximity to the magnetic pole and solar wind activity level

    Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    Get PDF
    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED

    The STONE curve: A ROC-derived model performance assessment tool

    Get PDF
    A new model validation and performance assessment tool is introduced, the sliding threshold of observation for numeric evaluation (STONE) curve. It is based on the relative operating characteristic (ROC) curve technique, but instead of sorting all observations in a categorical classification, the STONE tool uses the continuous nature of the observations. Rather than defining events in the observations and then sliding the threshold only in the classifier (model) data set, the threshold is changed simultaneously for both the observational and model values, with the same threshold value for both data and model. This is only possible if the observations are continuous and the model output is in the same units and scale as the observations, that is, the model is trying to exactly reproduce the data. The STONE curve has several similarities with the ROC curve, plotting probability of detection against probability of false detection, ranging from the (1,1) corner for low thresholds to the (0,0) corner for high thresholds, and values above the zero-intercept unity-slope line indicating better than random predictive ability. The main difference is that the STONE curve can be nonmonotonic, doubling back in both the x and y directions. These ripples reveal asymmetries in the data-model value pairs. This new technique is applied to modeling output of a common geomagnetic activity index as well as energetic electron fluxes in the Earth's inner magnetosphere. It is not limited to space physics applications but can be used for any scientific or engineering field where numerical models are used to reproduce observations.Comment: 19 pages, including 4 figures. Currently in second-round review with "Earth and Space Science": https://agupubs.onlinelibrary.wiley.com/journal/2333508

    V and V Efforts of Auroral Precipitation Models: Preliminary Results

    Get PDF
    Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models

    Evaluating the Uncertainties in the Electron Temperature and Radial Speed Measurements Using White Light Corona Eclipse Observations

    Get PDF
    We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within +/-0.5 MK and +/-100 km s(exp1), respectively, over coronal heights up to 5.0 R from Sun center.We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of is approximately equal to 4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb

    Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning

    Get PDF
    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) Soft X-ray Imager (SXI) will shine a spotlight on magnetopause dynamics during magnetic reconnection. We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time. By making assumptions about the magnetopause shape, we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic (MHD) simulation. The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE (Earth radius) and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning

    Data needs to be a priority

    Get PDF
    Findability, Accessibility, Interoperability, and Reusability (FAIR) data are essential to heliophysics and all scientific research. The principles of FAIR data ensure the reusability and findability of data, as well as its long-term care. The goal is that data are accessible for the ongoing discovery and verification process and can be used on their own or with newly generated data in future studies leading to innovations. With the onset in the previous decades of NASA and other agencies requiring mission data to be open to the public, heliophysics has already made great strides toward FAIR data and benefited from these efforts. Continued improvements in our metadata, data archives, and data portals and the addition of DOIs for data citation will ensure data will be FAIR, enabling further scientific discoveries, reproducibility of results, longitudinal studies, and verification and validation of models. Currently, not all the data collected are findable and on open networks or archives, and not all data on archives have DOIs. Within this study, we make recommendations to prioritize resources needed to satisfy FAIR data principles, treating them as a fundamental research infrastructure rather than a simple research product.• Data collection, preparation, archiving, and accessibility need to be a priority.• Data collection, preparation, archiving, and accessibility need dedicated and sustained funding support.• Data need to be accessible through investment in infrastructure: tools to access and read the data and personnel to maintain these data and IT infrastructure.• Data need to be collected in sustained ways to enable further science and, specifically, model validation efforts

    Transitioning Models and Model Output to Space Weather Operations: Challenges and Opportunities

    Get PDF
    The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center

    Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning

    Get PDF
    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) Soft X-ray Imager (SXI) will shine a spotlight on magnetopause dynamics during magnetic reconnection. We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time. By making assumptions about the magnetopause shape, we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic (MHD) simulation. The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE (Earth radius) and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning

    Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    Get PDF
    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities
    corecore