3 research outputs found

    Electrochemical analysis of indigo carmine using polyarginine modified carbon paste electrode

    Get PDF
    Suitable electrocatalytic method is established for the selective determination of indigo carmine (IC) at polyarginine modified carbon paste electrode (PAMCPE). Surface morphological study of bare carbon paste electrode (CPE) and PAMPCE is done by field emission scanning electron microscopy (FESEM). The influence of different parameters such as IC concentration, solution pH and potential scan rate on the electrode responses is studied using cyclic and differential pulse voltammetry techniques. The prepared PAMCPE shows better electrochemical response towards IC than CPE. No interference is noticed at simultaneous presence of IC and riboflavin (RF) in the solution. The electrocatalytic current of IC at PAMPCE is varied linearly with its concentration in two separate ranges, from 2×10-7 to 10-6 M, and 1.5×10-6 to 3.5×10-6 M. Limits of detection (LOD) and quantification (LOQ) are determined as 2.53×10-8 and 8.43×10-8 M, respectively. The developed PAMCPE is showing successful reproducibility and stability. It is also found sensitive and reliable for trace amounts of IC in some real water and food samples. Since preparation of PAMCPE sensor is simple and easy, it could become a part of the standard method for determination of IC in real samples

    Electro-Polymerized Titan Yellow Modified Carbon Paste Electrode for the Analysis of Curcumin

    No full text
    A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis
    corecore