11 research outputs found

    Design and Simulation of a Novel Magnetic Microactuator for Microrobots in Lab-On-a-Chip Applications

    Get PDF
    This article presents the design of a magnetic microactuator comprising soft magnetic material blocks and flexible beams. The modular layout of the proposed microactuator promotes scalability towards different microrobotic applications using low magnetic fields.  The presented microactuator consists of three soft magnetic material (Ni-Fe 4750) blocks connected together via two Polydimethylsiloxane (PDMS) semi-circular beams. A detailed design approach is highlighted giving considerations toward compactness, range of motion and force characteristics of the actuator. The actuator displacement and force characteristics are approximately linear in the magnetic field strength range of 80-160 kA/m. It can achieve maximum displacements of 111.6 µm (at 160 kA/m) during extension and 10.7 µm (at 80 kA/m) during contraction under no-load condition. The maximum force output of the microactuator, computed through a contact simulation, was 404.3 nN at a magnetic field strength of 160 kA/m. The microactuator achieved stroke angles up to 18.4 in a study where the microactuator was integrated with a swimming microrobot executing rowing motion using an artificial appendage, providing insight into the capabilities of actuating untethered microrobots

    Review on Photomicrography based Full Blood Count (FBC) Testing and Recent Advancements

    Get PDF
    With advancements in related sub-fields, research on photomicrography in life science is emerging and this is a review on its application towards human full blood count testing which is a primary test in medical practices. For a prolonged period of time, analysis of blood samples is the basis for bio medical observations of living creatures. Cell size, shape, constituents, count, ratios are few of the features identified using DIP based analysis and these features provide an overview of the state of human body which is important in identifying present medical conditions and indicating possible future complications. In addition, functionality of the immune system is observed using results of blood tests. In FBC tests, identification of different blood cell types and counting the number of cells of each type is required to obtain results. Literature discuss various techniques and methods and this article presents an insightful review on human blood cell morphology, photomicrography, digital image processing of photomicrographs, feature extraction and classification, and recent advances. Integration of emerging technologies such as microfluidics, micro-electromechanical systems, and artificial intelligence based image processing algorithms and classifiers with cell sensing have enabled exploration of novel research directions in blood testing applications.

    Lagoons of Sri Lanka: from the origins to the present

    No full text

    Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review

    No full text
    Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented

    Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology

    No full text
    Under this research, a novel tactile sensor has been developed using a conductive polymer-based sensing element. The incorporated sensing element is manufactured by polymer press moulding, where the compound is based on silicone rubber and has enhancements by silica and carbon black, with Silane-69 as the coupling agent. Characteristics of the sensing element have been observed using its sensitivity and range, where its results pose an inherent nonlinearity of conductive polymers. For the force scaling purpose, a novel 3D printed cylindrical arch spring structure was developed for this highly customizable tactile sensor by adopting commonly available ABSplus material in 3D printing technology. By considering critical dimensions of the structure, finite element analysis was carried out to achieve nearly optimized results. A special electrical routing arrangement was also designed to reduce the routing complexities. The optimized structure was fabricated using the 3D printing technology. A microcontroller-based signal conditioning circuit was introduced to the system for the purpose of acquiring data. The sensor has been tested up to the maximum load condition using a force indenter. This sensor has a maximum applicable range of 90 N with a maximum structural deflection of 4 mm. The sensor assembly weighs 155 g and the outer dimensions are 85 mm in diameter and 83 mm in height

    Vision-Based Performance Analysis of an Active Microfluidic Droplet Generation System Using Droplet Images

    No full text
    This paper discusses an active droplet generation system, and the presented droplet generator successfully performs droplet generation using two fluid phases: continuous phase fluid and dispersed phase fluid. The performance of an active droplet generation system is analysed based on the droplet morphology using vision sensing and digital image processing. The proposed system in the study includes a droplet generator, camera module with image pre-processing and identification algorithm, and controller and control algorithm with a workstation computer. The overall system is able to control, sense, and analyse the generation of droplets. The main controller consists of a microcontroller, motor controller, voltage regulator, and power supply. Among the morphological features of droplets, the diameter is extracted from the images to observe the system performance. The MATLAB-based image processing algorithm consists of image acquisition, image enhancement, droplet identification, feature extraction, and analysis. RGB band filtering, thresholding, and opening are used in image pre-processing. After the image enhancement, droplet identification is performed by tracing the boundary of the droplets. The average droplet diameter varied from ~3.05 mm to ~4.04 mm in the experiments, and the average droplet diameter decrement presented a relationship of a second-order polynomial with the droplet generation time

    A Review on the Motion of Magnetically Actuated Bio-Inspired Microrobots

    No full text
    Nature consists of numerous solutions to overcome challenges in designing artificial systems. Various actuation mechanisms have been implemented in microrobots to mimic the motion of microorganisms. Such bio-inspired designs have contributed immensely to microscale developments. Among the actuation mechanisms, magnetic actuation is widely used in bio-inspired microrobotic systems and related propulsion mechanisms used by microrobots to navigate inside a magnetic field and are presented in this review. In addition, the considered robots are in microscale, and they can swim inside a fluidic environment with a low Reynolds number. In relation to microrobotics, mimicry of bacteria flagella, sperm flagella, cilia, and fish are significant. Due to the fact that these biological matters consist of different propulsion mechanisms, the effect of various parameters was investigated in the last decade and the review presents a summary that enhances understanding of the working principle of propulsion mechanisms. In addition, the effect of different parameters on the various speeds of the existing microrobots was analyzed to identify their trends. So, the swimming speeds of the microrobots show an upward trend with increasing body length, frequency, magnetic flux density, and helix angle. Microfabrication techniques play a significant role in the microscale because the device designs are highly dependent on the availability of the techniques. The presented microrobots were manufactured by 3D/4D photolithography and rapid prototyping techniques. Proper materials enable effective fabrication of microrobots using the mentioned techniques. Therefore, magnetically active material types, matrix materials, biocompatible and biodegradable materials are presented in this study. Utilizing biocompatible and biodegradable materials avoids adverse effects to the organs that could occur otherwise. In addition, magnetic field generation is significant for the propulsion of such microrobots. We conclude the review with an overview of the biomimicry of microrobots and magnetically actuated robot propulsion
    corecore