30 research outputs found

    Role of COX-2 in the bioactivation of methylenedianiline and in its proliferative effects in vascular smooth muscle cells

    No full text
    4,4\u27-Methylenedianiline (DAPM) is an aromatic diamine used directly in the production of polyurethane foams and epoxy resins, or as a precursor to MDI in the manufacture of some polyurethanes. In our prior experiments, we showed that chronic, intermittent treatment of female rats with DAPM resulted in vascular medial hyperplasia of pulmonary arteries. In addition, treatment of vascular smooth muscle cells (VSMC) in culture with DAPM increased the rates of proliferation in a manner that was inhibited by co-treatment with N-acetylcysteine but was not associated with oxidative stress. We thus hypothesized that NAC treatment inhibited DAPM toxicity by competing for binding reactive intermediates formed through DAPM metabolism. Because the peroxidase enzyme cyclooxygenase is constitutively expressed in VSMC, and because cyclooxygenase is known to metabolize similar aromatic amines to electrophilic intermediates, we further hypothesized that DAPM-induced VSMC proliferation was dependent upon COX-1/2-mediated bioactivation. To test this hypothesis, we treated VSMC with DAPM and measured cell proliferation, COX-2 expression, COX-1/2 activity, and levels of covalent binding. DAPM treatment resulted in a dose-dependent increase in proliferation that was abolished by co-treatment with the COX-2-selective inhibitor celecoxib. In addition, DAPM exposure increased the rates of proliferation in VSMC isolated from wild-type but not COX-2 (-/-) mice. Paradoxically, treatment with DAPM reduced the cellular production of PGE(2) and PGF(2α), but dose-dependently increased the COX-2 protein levels. Covalent binding of [(14)C]-DAPM to VSMC biomolecules was greater in wild-type than in COX-2 (-/-) cells. However, covalent binding of [(14)C]-DAPM was not altered by co-treatment with a nonselective inhibitor of cytochromes P450. These studies thus suggest that DAPM-induced VSMC proliferation may be due to bioactivation of DAPM, perhaps through the action of cyclooxygenase. The data furthermore suggest that DAPM\u27s mechanism of action may possibly involve inhibition or suicide inactivation of COX-2. In addition, because we observed an increase in DAPM-induced VSMC proliferation in cells isolated from female compared to male rats, further studies into the potential interplay between DAPM, the estrogen receptor, and COX-2 seem warranted

    Expression and genetic variation of the Aplysia egg-laying hormone gene family in the atrial gland

    No full text
    We have screened an Aplysia atrial gland cDNA library using an egg-laying hormone (ELH) precursor probe and have isolated and characterized five different clones, four of which are full-length and approximately 0.8 kb in size. The characterization of these cDNA clones firmly established the genetic variation of the ELH-related precursors expressed in the atrial gland and provided a rational basis for their revised nomenclature proposed herein. The five precursor ELH-related cDNA sequences obtained predicted the following genetically distinct polypeptide precursors designated as: A, [Asp]A, [Glu-,Gln]A, [Pro]B, and [Phe, Asp]BT. The [Phe,Asp]BT cDNA sequence predicted a truncated form of a B-type precursor. Northern blot analysis of atrial gland RN A identified two transcripts of about equal intensity of 0.9 kb and 1.1kb. Polymerase chain reaction of genomic DNA, together with DNA sequence analysis, resolved previously reported discrepancies between genomic and cDNA sequences of the ELH-related precursors. Taken together the results obtained identified the expression of five ELH-related precursor genes in the atrial gland of Aplysia from at least two genetic loci per haploid genome
    corecore