1,946 research outputs found

    Single cell molecular alterations reveal target cells and pathways of concussive brain injury.

    Get PDF
    The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect, given the convoluted cytoarchitecture of affected brain regions such as the hippocampus. Hippocampal dysfunction during TBI results in cognitive decline that may escalate to other neurological disorders, the molecular basis of which is hidden in the genomic programs of individual cells. Using the unbiased single cell sequencing method Drop-seq, we report that concussive TBI affects previously undefined cell populations, in addition to classical hippocampal cell types. TBI also impacts cell type-specific genes and pathways and alters gene co-expression across cell types, suggesting hidden pathogenic mechanisms and therapeutic target pathways. Modulating the thyroid hormone pathway as informed by the T4 transporter transthyretin Ttr mitigates TBI-associated genomic and behavioral abnormalities. Thus, single cell genomics provides unique information about how TBI impacts diverse hippocampal cell types, adding new insights into the pathogenic pathways amenable to therapeutics in TBI and related disorders

    Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production.

    Get PDF
    Catalysts with a single atom site allow highly tuning of the activity, stability, and reactivity of heterogeneous catalysts. Therefore, atomistic understanding of the pertinent mechanism is essential to simultaneously boost the intrinsic activity, site density, electron transport, and stability. Here, we report that atomically dispersed nickel (Ni) in zincblende cadmium-zinc sulfide quantum dots (ZCS QDs) delivers an efficient and durable photocatalytic performance for water splitting under sunlight. The finely tuned Ni atoms dispersed in ZCS QDs exhibit an ultrahigh photocatalytic H2 production activity of 18.87 mmol hour-1 g-1. It could be ascribed to the favorable surface engineering to achieve highly active sites of monovalent Ni(I) and the surface heterojunctions to reinforce the carrier separation owing to the suitable energy band structures, built-in electric field, and optimized surface H2 adsorption thermodynamics. This work demonstrates a synergistic regulation of the physicochemical properties of QDs for high-efficiency photocatalytic H2 production

    Observation of Viruses, Bacteria, and Fungi in Clinical Skin Samples under Transmission Electron Microscopy

    Get PDF
    The highlight of this chapter is the description of the clinical manifestation and its pathogen and the host tissue damage observed under the transmission electron microscopy, which helps the clinician understand the pathogen’s ultrastructure, the change of host sub-cell structure, and helps the laboratory workers understand the pathogen-induced human skin lesions’ clinical characteristics, to establish a two-way learning exchange database with vivid images

    Identification and functional characterization of EseH, a new effector of the type III secretion system of Edwardsiella piscicida

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135199/1/cmi12638_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135199/2/cmi12638.pd

    Increased levels of soluble CD226 in sera accompanied by decreased membrane CD226 expression on peripheral blood mononuclear cells from cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a cellular membrane triggering receptor, CD226 is involved in the NK cell- or CTL-mediated lysis of tumor cells of different origin, including freshly isolated tumor cells and tumor cell lines. Here, we evaluated soluble CD226 (sCD226) levels in sera, and membrane CD226 (mCD226) expression on peripheral blood mononuclear cells (PBMC) from cancer patients as well as normal subjects, and demonstrated the possible function and origin of the altered sCD226, which may provide useful information for understanding the mechanisms of tumor escape and for immunodiagnosis and immunotherapy.</p> <p>Results</p> <p>Soluble CD226 levels in serum samples from cancer patients were significantly higher than those in healthy individuals (<it>P </it>< 0.001), while cancer patients exhibited lower PBMC mCD226 expression than healthy individuals (<it>P </it>< 0.001). CD226-Fc fusion protein could significantly inhibit the cytotoxicity of NK cells against K562 cells in a dose-dependent manner. Furthermore, three kinds of protease inhibitors could notably increase mCD226 expression on PMA-stimulated PBMCs and Jurkat cells with a decrease in the sCD226 level in the cell culture supernatant.</p> <p>Conclusion</p> <p>These findings suggest that sCD226 might be shed from cell membranes by certain proteases, and, further, sCD226 may be used as a predictor for monitoring cancer, and more important, a possible immunotherapy target, which may be useful in clinical application.</p

    Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy

    Get PDF
    This chapter highlights the description of the clinical manifestation and its pathogen and the host tissue damage observed under the Scanning Electron Microscope, which helps the clinician to understand the pathogen’s superstructure, the change of host subcell structure, and the laboratory workers to understand the clinical characteristics of pathogen-induced human skin lesions, to establish a two-way learning exchange database with vivid image

    Cyclostratigraphy of Lower Permian alkaline lacustrine deposits in the Mahu Sag, Junggar basin and its stratigraphic implication

    Get PDF
    The Lower Permian Fengcheng Formation of the Mahu Sag is one of the most potentially petroliferous sequences in China, and its unique alkaline lacustrine deposits provide important information on the paleoclimate and paleoenvironment of the early Permian. However, because of the complexity of the heterogeneous lithology and sedimentary facies in lacustrine deposits, the lateral correlation of lithofacies becomes challenging. Using cyclostratigraphy, we conducted a detailed astronomical cycle analysis of the Lower Permian Fengcheng Formation in the northern Mahu Sag, established an astronomical time scale, and constructed an isochronous sedimentary framework by collating the cycles of the different wells. Nine 405-kyr long-eccentricity cycles in the Fengcheng Formation were identified, and absolute astronomical time scales were established with the anchored point at ∼300 Ma in the Lower member of the Fengcheng Formation. Based on the identification of lithofacies, the spatio-temporal variation in the lithofacies within the Fengcheng Formation was reconstructed. The astronomical time scale has proven to be reliable, and the lithofacies distribution within the isochronal framework is effective for investigating the spatial variation of lithofacies in alkaline lacustrine deposits. Favorable dolomitic mudstones developed in the central and transitional zones, corresponding to the three long-eccentricity cycles in the middle member of the Fengcheng Formation. Tuffaceous mudstones with high potential mainly developed in the lower member of the Fengcheng Formation in the marginal zone of the Mahu Sag. This study demonstrates an approach that can be used to study lithofacies in lacustrine deposits
    • …
    corecore