61 research outputs found

    Investigation of Normalization Methods using Plasma Parameters for Laser Induced Breakdown Spectroscopy (LIBS) under simulated Martian Conditions

    Get PDF
    Laser Induced Breakdown Spectroscopy data need to be normalized, especially in the field of planetary exploration We investigated plasma parameters as temperature and electron density for this purpose

    Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars

    Get PDF
    The intensity of the molecular CaCl emission in LIBS spectra is examined in order to evaluate its suitability for the detection of chlorine in a Martian environment. Various mixtures resembling Martian targets with varying Cl content are investigated under simulated Martian conditions. The reactions leading to the formation of CaCl are modeled based on reaction kinetics and are used to fit the measured CaCl band intensities. MgCl bands are also investigated as potential alternatives to CaCl, but no MgCl bands can be identified in samples containing both Mg and Cl. The study confirms that CaCl is well suited for the indirect detection of chlorine, but finds a strong dependence on the concentrations of Ca and Cl in the sample. Spectra from samples with a high chlorine concentration can have low-intensity CaCl emission due to a deficiency of Ca. A qualitative estimate of the sample composition is possible based on the ratio of the band intensity of CaCl to the intensity of Ca emission lines. Time-resolved measurements show that the CaCl concentration in the plasma is highest after about 1 ”s

    CaCl and CaF emission in LIBS under simulated martian conditions

    Get PDF
    Chlorine and fluorine play an important role in the geological history of Mars due to their high concentration in Martian magmas and their influence on the generation and evolution of Martian basalts. Chlorine-bearing salts could also facilitate the formation of eutectic brines that could be important for the fluvial history of Mars. The LIBS instruments of ChemCam and SuperCam can detect emission lines of Cl and F, but the intensity of these emission lines is comparatively low, making it difficult to quantify them correctly. A promising alternative is the quantification by molecular emission of diatomic molecules like CaCl and CaF, which can be observed as intense molecular bands in LIBS spectra if Ca is also present. However, the nonlinear dependence of the band intensity on the concentrations of both elements needs to be considered. In this study, we expand upon our previous analysis of molecular bands by investigating samples which produce CaCl bands, CaF bands, or both. We find that the highest CaCl band intensities are found in samples containing more Ca than Cl, while the strongest CaF bands are found in samples with roughly equal concentrations of Ca and F. Both observations can be described by the model that we present here. We also find that the CaCl band is significantly stronger for a sample containing CaCl2 than it is for a sample containing the same concentrations of Ca and Cl in separate bonds. The opposite is true for the CaF band, which is significantly weaker for the sample containing CaF2 bonds than it is for the sample that does not contain CaF2 bonds. These matrix effects are partially attributed to fragmentation during the ablation process and differences in the dissociation energies. Furthermore, we observe that CaF formation is not affected by competing CaCl formation, while CaCl is strongly affected by competing CaF formation. All measurements are done in simulated Martian atmospheric conditions in order to assist the analysis of Martian LIBS data

    An insight into ancient aeolian processes and post‐Noachian aqueous alteration in Gale crater, Mars, using ChemCam geochemical data from the Greenheugh capping unit

    Get PDF
    Aeolian processes have shaped and contributed to the geological record in Gale crater, Mars, long after the fluviolacustrine system existed ∌3 Ga ago. Understanding these aeolian deposits, particularly those which have been lithified and show evidence for aqueous alteration, can help to constrain the environment at their time of deposition and the role of liquid water later in Mars’ history. The NASA Curiosity rover investigated a prominent outcrop of aeolian sandstone within the Stimson formation at the Greenheugh pediment as part of its investigation of the Glen Torridon area. In this study, we use geochemical data from ChemCam to constrain the effects of aeolian sedimentary processes, sediment provenance, and diagenesis of the sandstone at the Greenheugh pediment, comparing the Greenheugh data to the results from previous Stimson localities situated 2.5 km north and >200 m lower in elevation. Our results, supported by mineralogical data from CheMin, show that the Stimson formation at the Greenheugh pediment was likely sourced from an olivine-rich unit that may be present farther up the slopes of Gale crater’s central mound. Our results also suggest that the Greenheugh pediment Stimson formation was cemented by surface water runoff such as that which may have formed Gediz Vallis. The lack of alteration features in the Stimson formation at the Greenheugh pediment relative to those of the Emerson and Naukluft plateaus suggests that groundwater was not as available at this locality compared to the others. However, all sites share diagenesis at the unconformity
    • 

    corecore