10,649 research outputs found

    Mathematical Models for Estimating the Risk of vCJD Transmission

    Get PDF
    We present two different simple models for vCJD transmission by blood transfusion. Both models indicate that transfusions alone are unlikely to cause more than a few infections, unless the number of primary cases increases. To improve our models, future work should pursue data collection, empirical estimation of the model parameters, and examination of the underlying assumptions of our frameworks. Further improvements could also include examining susceptibility to vCJD infection by age group and iatrogenic infections introduced through surgical instruments. Regarding the latter, it may be worthwhile to conduct experiments to quantify the transmission of prions from an infected surgical instrument after repeated sterilization procedures

    Structure of Pion Photoproduction Amplitudes

    Get PDF
    We derive and apply the finite energy sum rules to pion photoproduction. We evaluate the low energy part of the sum rules using several state-of-the-art models. We show how the differences in the low energy side of the sum rules might originate from different quantum number assignments of baryon resonances. We interpret the observed features in the low energy side of the sum rules with the expectation from Regge theory. Finally, we present a model, in terms of a Regge-pole expansion, that matches the sum rules and the high-energy observables.Comment: 19 pages, 15 figures and 4 table

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic

    Magneto-thermodynamics of the spin-1/2 Kagome antiferromagnet

    Full text link
    In this paper, we use a new hybrid method to compute the thermodynamic behavior of the spin-1/2 Kagome antiferromagnet under the influence of a large external magnetic field. We find a T^2 low-temperature behavior and a very low sensitivity of the specific heat to a strong external magnetic field. We display clear evidence that this low temperature magneto-thermal effect is associated to the existence of low-lying fluctuating singlets, but also that the whole picture (T^2 behavior of Cv and thermally activated spin susceptibility) implies contribution of both non magnetic and magnetic excitations. Comparison with experiments is made.Comment: 4 pages, LaTeX 2.09 and RevTeX with 3 figures embedded in the text. Version to appear in Phys. Rev. Let

    Low-lying excitations and magnetization process of coupled tetrahedral systems

    Full text link
    We investigate low-lying singlet and triplet excitations and the magnetization process of quasi-1D spin systems composed of tetrahedral spin clusters. For a class of such models, we found various exact low-lying excitations; some of them are responsible for the first-order transition between two different ground states formed by local singlets. Moreover, we find that there are two different kinds of magnetization plateaus which are separated by a first-order transition.Comment: To appear in Phys.Rev.B (Issue 01 August 2002). A short comment is adde

    Anti-ferromagnetic ordering in arrays of superconducting pi-rings

    Get PDF
    We report experiments in which one dimensional (1D) and two dimensional (2D) arrays of YBa2Cu3O7-x-Nb pi-rings are cooled through the superconducting transition temperature of the Nb in various magnetic fields. These pi-rings have degenerate ground states with either clockwise or counter-clockwise spontaneous circulating supercurrents. The final flux state of each ring in the arrays was determined using scanning SQUID microscopy. In the 1D arrays, fabricated as a single junction with facets alternating between alignment parallel to a [100] axis of the YBCO and rotated 90 degrees to that axis, half-fluxon Josephson vortices order strongly into an arrangement with alternating signs of their magnetic flux. We demonstrate that this ordering is driven by phase coupling and model the cooling process with a numerical solution of the Sine-Gordon equation. The 2D ring arrays couple to each other through the magnetic flux generated by the spontaneous supercurrents. Using pi-rings for the 2D flux coupling experiments eliminates one source of disorder seen in similar experiments using conventional superconducting rings, since pi-rings have doubly degenerate ground states in the absence of an applied field. Although anti-ferromagnetic ordering occurs, with larger negative bond orders than previously reported for arrays of conventional rings, long-range order is never observed, even in geometries without geometric frustration. This may be due to dynamical effects. Monte-Carlo simulations of the 2D array cooling process are presented and compared with experiment.Comment: 10 pages, 15 figure
    corecore