2 research outputs found

    Redispersion of Gold Supported on Oxides

    No full text
    Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH<sub>3</sub>I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold

    Designer Titania-Supported Au–Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production

    No full text
    Photocatalytic hydrogen evolution may provide one of the solutions to the shift to a sustainable energy society, but the quantum efficiency of the process still needs to be improved. Precise control of the composition and structure of the metal nanoparticle cocatalysts is essential, and we show that fine-tuning the Au–Pd nanoparticle structure modifies the electronic properties of the cocatalyst significantly. Specifically, Pd<sub>shell</sub>–Au<sub>core</sub> nanoparticles immobilized on TiO<sub>2</sub> exhibit extremely high quantum efficiencies for H<sub>2</sub> production using a wide range of alcohols, implying that chemical byproducts from the biorefinery industry can be used as feedstocks. In addition, the excellent recyclability of our photocatalyst material indicates a high potential in industrial applications. We demonstrate that this particular elemental segregation provides optimal positioning of the unoccupied d-orbital states, which results in an enhanced utilization of the photoexcited electrons in redox reactions. We consider that the enhanced activity observed on TiO<sub>2</sub> is generic in nature and can be transferred to other narrow band gap semiconductor supports for visible light photocatalysis
    corecore