33 research outputs found

    Identification with iterative nearest neighbors using domain knowledge

    Get PDF
    A new iterative and interactive algorithm called CSN (Classification by Successive Neighborhood) to be used in a complex descriptive objects identification approach is presented. Complex objects are those designed by experts within a knowledge base to describe taxa (monography species) and also real organisms (collection specimens). The algorithm consists of neighborhoods computations from an incremental basis of characters using a dissimilarity function which takes into account structures and values of the objects. A discriminant power function is combined with domain knowledge on the features set at each iteration. It is shown that CSN consistently outperforms methods such as identification trees and simplifies interactive classification processes comparatively to search for K-Nearest-Neighbors method

    Recherche de concepts à partir de données arborescentes et imprécises

    Get PDF
    n this article, we propose a formalism (ASN) to deal with imprecise and structured data described with attributes and imprecise values. The ASN allow us to represente entities that are composed with parts and sub-parts ; values may be imprecise, unknown and the attributes may be not applicable. We can also take into account constraints that exist between the values of the attributes. We aim to find concepts from a set of entities described with ASN. Concepts are defined from an extension of the Galois lattice theory to deal with imprecise and structured data. To find concepts, we propose an incremental algorithm that compute a lattice concepts extracted from the Galois lattice where the too general concepts? in regard to a given criteria? are not computed.Dans cet article, nous proposons un formalisme de reprĂ©sentation de donnĂ©es structurĂ©es et imprĂ©cises, les Arborescences Symboliques NuancĂ©es (ASN), qui est fondĂ© sur la notion d'attribut-valeur. Les ASN nous permettent de reprĂ©senter des entitĂ©s composĂ©es de parties et sous-parties dont les caractĂ©ristiques peuvent ĂȘtre imprĂ©cises, inconnues ou bien inapplicables et prenant en compte les liens pouvant exister entre les valeurs des diffĂ©rentes caractĂ©ristiques. Nous nous intĂ©ressons Ă  la recherche de concepts Ă  partir d'un ensemble d'entitĂ©s dĂ©crites par les ASN. La dĂ©finition des concepts repose sur une extension des treillis de Galois au cas de donnĂ©es arborescentes et nuancĂ©es. Pour rechercher les concepts, nous prĂ©sentons un algorithme incrĂ©mental permettant de calculer un treillis extrait du treillis de Galois en Ă©lagant les concepts trop gĂ©nĂ©raux

    Le systeme SICLA: Principes et architecture

    Get PDF
    Résumé disponible dans les fichiers attaché
    corecore