4,622 research outputs found

    A boundary element alternating method for two-dimensional mixed-mode fracture problems

    Get PDF
    A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort

    CFD Predictions of Soot & CO Emissions Generated by a Partially-Fueled 9-Element Lean-Direct Injection Combustor

    Get PDF
    A study was undertaken to investigate the CO & soot emissions generated by a partially-fueled 9- element LDI (Lean-Direct Injection) combustor configuration operating in the idle range of jet engine conditions. In order to perform the CFD analysis, several existing soot/chemistry models were implemented into the OpenNCC (Open National Combustion Code). The calculations were based on a Reynolds-Averaged Navier Stokes (RANS) simulation with standard k-epsilon turbulence model, a 62- species jet-a/air chemistry, a 2-equation soot model, & a Lagrangian spray solver. A separate transport equation was solved for all individual species involved in jet-a/air combustion. In the test LDI configuration we examined, only five of the nine injectors were fueled with the major pilot injector operating at an equivalence ratio of near one and the other four main injectors operating at an equivalence ratio near 0.55. The calculations helped to identify several reasons behind the soot & CO formation in different regions of the combustor. The predicted results were compared with the reported experimental data on soot mass concentration (SMC) & emissions index of CO (EICO). The experimental results showed that an increase in either T3 and/or F/A ratio lead to a reduction in both EICO & SMC. The predicted results were found to be in reasonable agreement. However, the predicted EICO differed substantially in one test condition associated with higher F/A ratio

    Classical solutions for Yang-Mills-Chern-Simons field coupled to an external source

    Full text link
    We find wide class of exact solutions of Yang-Mills-Chern-Simons theory coupled to an external source, in terms of doubly periodic Jacobi elliptic functions. The obtained solutions include localized solitons, trigonometric solutions, pure cnoidal waves, and singular solutions in certain parameter range. Furthermore, it is observed that these solutions exist over a nonzero background.Comment: 5 page

    Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    Get PDF
    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions
    corecore