25 research outputs found

    Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression

    Get PDF
    The metabolic conversion of cholesterol into bile acids in liver is initiated by the rate-limiting cholesterol 7Ī±-hydroxylase (CYP7A1), whereas the bile salt export pump (BSEP) is responsible for the canalicular secretion of bile acids. Liver receptor homolog 1 (LRH-1) is a key transcriptional factor required for the hepatic expression of CYP7A1. We hypothesized that LRH-1 was also involved in the transcriptional regulation of BSEP. In support of our hypothesis, we found that overexpression of LRH-1 induced, whereas knockdown of LRH-1 decreased, BSEP expression. Consistent with its role in transcriptional regulation, LRH-1 dose-dependently transactivated the BSEP promoter. In addition, such transactivation by LRH-1 was required for maximal induction of BSEP expression through the bile acid/farnesoid X receptor (FXR) activation pathway. Bioinformatic and mutational analysis led to the identification of a functional liver receptor homolog 1-responsive element (LRHRE) in the BSEP promoter. Specific binding of LRH-1 to the LRHRE and recruitment of LRH-1 to the BSEP promoter were demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay, respectively. In conclusion, LRH-1 transcriptionally activated the BSEP promoter and functioned as a modulator in bile acid/FXR-mediated BSEP regulation. These results suggest that LRH-1 plays a supporting role to FXR in maintaining hepatic bile acid levels by coordinately regulating CYP7A1 and BSEP for bile acid synthesis and elimination, respectively

    Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor

    Get PDF
    Expression of bile salt export pump (BSEP) is regulated by the bile acid/farnesoid X receptor (FXR) signaling pathway. Two FXR isoforms, FXRĪ±1 and FXRĪ±2, are predominantly expressed in human liver. We previously showed that human BSEP was isoform-dependently regulated by FXR and diminished with altered expression of FXRĪ±1 and FXRĪ±2 in patients with hepatocellular carcinoma. In this study, we demonstrate that FXRĪ±1 and FXRĪ±2 regulate human BSEP through two distinct FXR responsive elements (FXRE): IR1a and IR1b. As the predominant regulator, FXRĪ±2 potently transactivated human BSEP through IR1a, while FXRĪ±1 weakly transactivated human BSEP through a newly identified IR1b. Relative expression of FXRĪ±1 and FXRĪ±2 affected human BSEP expression in vitro and in vivo. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the binding and recruitment of FXRĪ±1 and FXRĪ±2 to IR1b and IR1a. Sequence analysis concluded that IR1b was completely conserved among species, whereas IR1a exhibited apparent differences across species. Sequence variations in IR1a were responsible for the observed species difference in BSEP transactivation by FXRĪ±1 and FXRĪ±2. In conclusion, FXR regulates BSEP in an isoform-dependent and species-specific manner through two distinct FXREs, and alteration of relative FXR isoform expression may be a potential mechanism for FXR to precisely regulate human BSEP in response to various physiological and pathological conditions

    Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones

    Get PDF
    ABSTRACT Thiazolidinediones (TZD), including troglitazone, rosiglitazone, and pioglitazone, are agonists of peroxisome proliferator-activated receptor (PPAR)-ā„ and belong to a class of insulin-sensitizing drugs for type 2 diabetes mellitus. However, memberspecific, PPARā„-independent activities and toxicity have been reported, especially for troglitazone. Currently, the underlying mechanisms are not fully understood. In this study, we demonstrated that troglitazone but not rosiglitazone or pioglitazone modulated expression of farnesoid X receptor (FXR) target genes bile salt export pump (BSEP) and small heterodimer partner (SHP) in Huh-7 cells. More specifically, troglitazone acted as a partial agonist of FXR to weakly increase BSEP and SHP expression but functioned as a potent antagonist to significantly suppress bile acid-induced expression. Consistent with the finding, troglitazone partially induced but markedly antagonized bile acid-mediated BSEP promoter transactivation. However, such modulating effects were not detected with rosiglitazone or pioglitazone. Using the crystal structure of ligand-bound FXR ligand binding domain (LBD), molecular docking predicted that troglitazone, but not rosiglitazone or pioglitazone, could form a stable complex with FXR LBD. The specific ā£-tocopherol side chain of troglitazone significantly contributed to the formation of such a stable complex through extensive interactions with FXR LBD. The docking model was further validated by functional analyses of a series of dockingguided FXR mutants. In summary, the data demonstrated that troglitazone, but not rosiglitazone or pioglitazone, was an FXR modulator and potently antagonized bile acid-induced expression of FXR target genes. Such differential modulation of FXR signaling pathway by TZDs may represent one of the mechanisms for member-specific, PPARā„-independent activities and toxicity. Thiazolidinediones (TZD), including troglitazone, rosiglitazone, and pioglitazone, are a class of insulin-sensitizing drugs to treat type 2 diabetes mellitus. Such therapeutic effect of TZDs is achieved through activating nuclear receptor peroxisome proliferator-activated receptor (PPAR)-ā„, which is directly involved in the regulation of genes controlling glucose homeostasis and lipid metabolism. Studies also show that TZDs exhibit other important activities, such as cardiovascular, hypertension, and anticancer effects in a PPARā„-dependent or -independent manne

    Differential Modulation of Farnesoid X Receptor Signaling Pathway by the Thiazolidinediones

    No full text
    Thiazolidinediones (TZD), including troglitazone, rosiglitazone, and pioglitazone, are agonists of peroxisome proliferator-activated receptor (PPAR)-Ī³ and belong to a class of insulin-sensitizing drugs for type 2 diabetes mellitus. However, member-specific, PPARĪ³-independent activities and toxicity have been reported, especially for troglitazone. Currently, the underlying mechanisms are not fully understood. In this study, we demonstrated that troglitazone but not rosiglitazone or pioglitazone modulated expression of farnesoid X receptor (FXR) target genes bile salt export pump (BSEP) and small heterodimer partner (SHP) in Huh-7 cells. More specifically, troglitazone acted as a partial agonist of FXR to weakly increase BSEP and SHP expression but functioned as a potent antagonist to significantly suppress bile acid-induced expression. Consistent with the finding, troglitazone partially induced but markedly antagonized bile acid-mediated BSEP promoter transactivation. However, such modulating effects were not detected with rosiglitazone or pioglitazone. Using the crystal structure of ligand-bound FXR ligand binding domain (LBD), molecular docking predicted that troglitazone, but not rosiglitazone or pioglitazone, could form a stable complex with FXR LBD. The specific Ī±-tocopherol side chain of troglitazone significantly contributed to the formation of such a stable complex through extensive interactions with FXR LBD. The docking model was further validated by functional analyses of a series of docking-guided FXR mutants. In summary, the data demonstrated that troglitazone, but not rosiglitazone or pioglitazone, was an FXR modulator and potently antagonized bile acid-induced expression of FXR target genes. Such differential modulation of FXR signaling pathway by TZDs may represent one of the mechanisms for member-specific, PPARĪ³-independent activities and toxicity

    Effect Of Guggulsterone And Cembranoids Of Commiphora Mukul On Pancreatic Phospholipase A2: Role In Hypocholesterolemia

    No full text
    Guggulsterone (7) and cembranoids (8-12) from Commiphora mukul stem bark resin guggul were shown to be specific modulators of two independent sites that are also modulated by bile salts (1-6) to control cholesterol absorption and catabolism. Guggulsterone (7) antagonized the chenodeoxycholic acid (3)-activated nuclear farnesoid X receptor (FXR), which regulates cholesterol metabolism in the liver. The cembranoids did not show a noticeable effect on FXR, but lowered the cholate (1)-activated rate of human pancreatic IB phospholipase A2 (hPLA2), which controls gastrointestinal absorption of fat and cholesterol. Analysis of the data using a kinetic model has suggested an allosteric mechanism for the rate increase of hPLA2 by cholate and also for the rate-lowering effect by certain bile salts or cembranoids on the cholate-activated hPLA2 hydrolysis of phosphatidylcholine vesicles. The allosteric inhibition of PLA2 by certain bile salts and cembranoids showed some structural specificity. Biophysical studies also showed specific interaction of the bile salts with the interface-bound cholate-activated PLA2. Since cholesterol homeostasis in mammals is regulated by FXR in the liver for metabolism and by PLA2 in the intestine for absorption, modulation of PLA2 and FXR by bile acids and selected guggul components suggests novel possibilities for hypolipidemic and hypocholesterolemic therapies. Ā© 2009 American Chemical Society and American Society of Pharmacognosy

    Thyroid Function Variations Within the Reference Range Do Not Affect Quality of Life, Mood, or Cognitive Function in Community-Dwelling Older Men.

    No full text
    BackgroundVariations in thyroid function within the laboratory reference range have been associated with a number of clinical outcomes. However, quality of life, mood, and cognitive function have not been extensively studied, and it is not clear whether mild variations in thyroid function have major effects on these neurocognitive outcomes.MethodsData were analyzed from the Osteoporotic Fractures in Men (MrOS) Study, a cohort of community-dwelling men aged 65 years and older in the United States. A total of 539 participants who were not taking thyroid medications and had age-adjusted TSH levels within the reference range underwent detailed testing of quality of life, mood, and cognitive function at baseline. The same quality of life, mood, and cognitive outcomes were measured again in 193 of the men after a mean follow-up of 6 years. Outcomes were analyzed using thyrotropin (TSH) and free thyroxine (FT4) levels as continuous independent variables, adjusting for relevant covariates.ResultsAt baseline, there were no associations between TSH or FT4 levels and measures of quality of life, mood, or cognition in the 539 euthyroid men. Baseline thyroid function did not predict changes in these outcomes over a mean of 6 years in the 193 men in the longitudinal analysis.ConclusionsVariations in thyroid function within the age-adjusted laboratory reference range are not associated with variations in quality of life, mood, or cognitive function in community-dwelling older men

    Growth Modeling of the Maternal Cytokine Milieu throughout Normal Pregnancy: Macrophage-Derived Chemokine Decreases as Inflammation/Counterregulation Increases

    No full text
    Several recent studies have shown differences in the maternal immune milieu at different phases of pregnancy, but most studies have been cross-sectional or of relatively few time points. Levels of 42 cytokines were determined using a multiplex bead-based assay on archived serum from a cohort of pregnant women N=16 at median of 18 time points tested, from the first trimester through to parturition, per woman. Unconditional growth modeling was then used to determine time-dependent changes in levels of these cytokines. Macrophage-derived chemokine (MDC, aka CCL22) decreases as pregnancy progresses. IL-1Ī², IL-6, IL-8, IL-12p70, IL-13, IL-15, IP-10, and FLT3-ligand increase as a function of gestational weeks, and IFNĪ±2, IL-1ra, IL-3, IL-9, IL-12p40, and soluble CD40 ligand increase as a function of trimester. As pregnancy normally progresses, a maternal shift away from a type 2-biased immune response and toward an inflammatory/counterregulatory response is observed

    Reversals and limitations on high-intensity, life-sustaining treatments.

    No full text
    Critically ill patients often receive high-intensity life sustaining treatments (LST) in the intensive care unit (ICU), although they can be ineffective and eventually undesired. Determining the risk factors associated with reversals in LST goals can improve patient and provider appreciation for the natural history and epidemiology of critical care and inform decision making around the (continued) use of LSTs.This is a single institution retrospective cohort study of patients receiving life sustaining treatment in an academic tertiary hospital from 2009 to 2013. Deidentified patient electronic medical record data was collected via the clinical data warehouse to study the outcomes of treatment limiting Comfort Care and do-not-resuscitate (DNR) orders. Extended multivariable Cox regression models were used to estimate the association of patient and clinical factors with subsequent treatment limiting orders.10,157 patients received life-sustaining treatment while initially Full Code (allowing all resuscitative measures). Of these, 770 (8.0%) transitioned to Comfort Care (with discontinuation of any life-sustaining treatments) while 1,669 (16%) patients received new DNR orders that reflect preferences to limit further life-sustaining treatment options. Patients who were older (Hazard Ratio(HR) 1.37 [95% CI 1.28-1.47] per decade), with cerebrovascular disease (HR 2.18 [95% CI 1.69-2.81]), treated by the Medical ICU (HR 1.92 [95% CI 1.49-2.49]) and Hematology-Oncology (HR 1.87 [95% CI 1.27-2.74]) services, receiving vasoactive infusions (HR 1.76 [95% CI 1.28, 2.43]) or continuous renal replacement (HR 1.83 [95% CI 1.34, 2.48]) were more likely to transition to Comfort Care. Any new DNR orders were more likely for patients who were older (HR 1.43 [95% CI 1.38-1.48] per decade), female (HR 1.30 [95% CI 1.17-1.44]), with cerebrovascular disease (HR 1.45 [95% CI 1.25-1.67]) or metastatic solid cancers (HR 1.92 [95% CI 1.48-2.49]), or treated by Medical ICU (HR 1.63 [95% CI 1.42-1.86]), Hematology-Oncology (HR 1.63 [95% CI 1.33-1.98]) and Cardiac Care Unit-Heart Failure (HR 1.41 [95% CI 1.15-1.72]).Decisions to reverse or limit treatment goals occurs after more than 1 in 13 trials of LST, and is associated with older female patients, receiving non-ventilator forms of LST, cerebrovascular disease, and treatment by certain medical specialty services

    Effect of guggulsterone and cembranoids of Commiphora mukul on pancreatic phospholipase A2: Role in hypocholesterolemia

    No full text
    Guggulsterone (7) and cembranoids (8-12) from Commiphora mukul stem bark resin guggul were shown to be specific modulators of two independent sites that are also modulated by bile salts (1-6) to control cholesterol absorption and catabolism. Guggulsterone (7) antagonized the chenodeoxycholic acid (3)-activated nuclear farnesoid X receptor (FXR), which regulates cholesterol metabolism in the liver. The cembranoids did not show a noticeable effect on FXR, but lowered the cholate (1)-activated rate of human pancreatic IB phospholipase A2 (hPLA2), which controls gastrointestinal absorption of fat and cholesterol. Analysis of the data using a kinetic model has suggested an allosteric mechanism for the rate increase of hPLA2 by cholate and also for the rate-lowering effect by certain bile salts or cembranoids on the cholate-activated hPLA2 hydrolysis of phosphatidylcholine vesicles. The allosteric inhibition of PLA2 by certain bile salts and cembranoids showed some structural specificity. Biophysical studies also showed specific interaction of the bile salts with the interface-bound cholate-activated PLA2. Since cholesterol homeostasis in mammals is regulated by FXR in the liver for metabolism and by PLA2 in the intestine for absorption, modulation of PLA2 and FXR by bile acids and selected guggul components suggests novel possibilities for hypolipidemic and hypocholesterolemic therapies. Ā© 2009 American Chemical Society and American Society of Pharmacognosy
    corecore