2,821 research outputs found
Theory of ferromagnetism in (A,Mn)B semiconductors
A brief review of theory of ferromagnetism of dilute magnetic semiconductors
of the form (A,Mn)B based on the double exchange model is first given. A
systematic investigation of the phenomena extending the current theory is
outlined. We begin with an investigation of the regions of instability of the
nonmagnetic towards the ferromagnetic state of a system of Mn-atoms doped in
AB-type semiconductor. A self-consistent many-body theory of the ferromagnetic
state is then developed, going beyond the mean field approaches by including
fluctuations of the Mn-spins and the itinerant hole-gas. A functional theory
suitable for computation of system properties such as Curie temperature as a
function of hole and the Mn-concentration, spin-current, etc. is formulated.Comment: 16 page
Heat and Entropy in nonextensive thermodynamics
The concepts of quantity of heat and work are deduced in the non-extensive
statistical mechanics context, following steps in parallel to those employed in
the extensive statistical mechanics.Comment: 10 page
Development of three dimensional constitutive theories based on lower dimensional experimental data
Most three dimensional constitutive relations that have been developed to
describe the behavior of bodies are correlated against one dimensional and two
dimensional experiments. What is usually lost sight of is the fact that
infinity of such three dimensional models may be able to explain these
experiments that are lower dimensional. Recently, the notion of maximization of
the rate of entropy production has been used to obtain constitutive relations
based on the choice of the stored energy and rate of entropy production, etc.
In this paper we show different choices for the manner in which the body stores
energy and dissipates energy and satisfies the requirement of maximization of
the rate of entropy production that leads to many three dimensional models. All
of these models, in one dimension, reduce to the model proposed by Burgers to
describe the viscoelastic behavior of bodies.Comment: 23 pages, 6 figure
Justification of Power-Law Canonical Distributions Based on Generalized Central Limit Theorem
A self-consistent thermodynamic framework is presented for power-law
canonical distributions based on the generalized central limit theorem by
extending the discussion given by Khinchin for deriving Gibbsian canonical
ensemble theory. The thermodynamic Legendre transform structure is invoked in
establishing its connection to nonextensive statistical mechanics.Comment: 8 pages. Some minor corrections are made, with no changes in the
conclusion
Broken-symmetry-adapted Green function theory of condensed matter systems:towards a vector spin-density-functional theory
The group theory framework developed by Fukutome for a systematic analysis of
the various broken symmetry types of Hartree-Fock solutions exhibiting spin
structures is here extended to the general many body context using spinor-Green
function formalism for describing magnetic systems. Consequences of this theory
are discussed for examining the magnetism of itinerant electrons in nanometric
systems of current interest as well as bulk systems where a vector spin-density
form is required, by specializing our work to spin-density-functional
formalism. We also formulate the linear response theory for such a system and
compare and contrast them with the recent results obtained for localized
electron systems. The various phenomenological treatments of itinerant magnetic
systems are here unified in this group-theoretical description.Comment: 17 page
- …