22 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Assessing morphological changes in a human-impacted alluvial system using hydro-sediment modeling and remote sensing

    No full text
    Abstract Construction of managed aquifer recharge structures (MARS) to store floodwater is a common strategy for storing depleted groundwater resources in arid and semi-arid regions, as part of integrated water resources management (IWRM). MARS divert surface water to groundwater, but this can affect downstream fluvial processes. The impact of MARS on fluvial processes was investigated in this study by combining remote sensing techniques with hydro-sediment modeling for the case of the Kaboutar-Ali-Chay aquifer, northwestern Iran. The impact of MARS on groundwater dynamics was assessed, sedimentation across the MARS was modeled using a 2D hydrodynamic model, and morphological changes were quantified in the human-impacted alluvial fan using Landsat time series data and statistical methods. Changes were detected by comparing data for the periods before (1985–1996) and after (1997–2018) MARS construction. The results showed that the rate of groundwater depletion decreased from 2.14 m/yr before to 0.86 m/yr after MARS construction. Hydro-sediment modeling revealed that MARS ponds slowed water outflow, resulting in a severe decrease in sediment load which lead to a change from sediment deposition to sediment erosion in the alluvial fan. Morphometric analyses revealed decreasing alluvial fan area and indicated significant differences (p < 0.01) between pre- and post-impact periods for different morphometric parameters analyzed. The rate of change in area of the Kaboutar-Ali-Chay alluvial fan changed from −0.228 to −0.115 km²/year between pre- and post-impact periods

    Urban flood hazard modeling using self-organizing map neural network

    No full text
    Abstract Floods are the most common natural disaster globally and lead to severe damage, especially in urban environments. This study evaluated the efficiency of a self-organizing map neural network (SOMN) algorithm for urban flood hazard mapping in the case of Amol city, Iran. First, a flood inventory database was prepared using field survey data covering 118 flooded points. A 70:30 data ratio was applied for training and validation purposes. Six factors (elevation, slope percent, distance from river, distance from channel, curve number, and precipitation) were selected as predictor variables. After building the model, the odds ratio skill score (ORSS), efficiency (E), true skill statistic (TSS), and the area under the receiver operating characteristic curve (AUC-ROC) were used as evaluation metrics to scrutinize the goodness-of-fit and predictive performance of the model. The results indicated that the SOMN model performed excellently in modeling flood hazard in both the training (AUC = 0.946, E = 0.849, TSS = 0.716, ORSS = 0.954) and validation (AUC = 0.924, E = 0.857, TSS = 0.714, ORSS = 0.945) steps. The model identified around 23% of the Amol city area as being in high or very high flood risk classes that need to be carefully managed. Overall, the results demonstrate that the SOMN model can be used for flood hazard mapping in urban environments and can provide valuable insights about flood risk management

    Urban flood risk mapping using the GARP and QUEST models:a comparative study of machine learning techniques

    No full text
    Abstract Flood risk mapping and modeling is important to prevent urban flood damage. In this study, a flood risk map was produced with limited hydrological and hydraulic data using two state-of-the-art machine learning models: Genetic Algorithm Rule-Set Production (GARP) and Quick Unbiased Efficient Statistical Tree (QUEST). The flood conditioning factors used in modeling were: precipitation, slope, curve number, distance to river, distance to channel, depth to groundwater, land use, and elevation. Based on available reports and field surveys for Sari city (Iran), 113 points were identified as flooded areas (with each flooded zone assigned a value of 1). Different conditioning factors, including urban density, quality of buildings, age of buildings, population density, and socio-economic conditions, were taken into account to analyze flood vulnerability. In addition, the weight of these conditioning factors was determined based on expert knowledge and Fuzzy Analytical Network Process (FANP). An urban flood risk map was then produced using flood hazard and flood vulnerability maps. The area under the receiver-operator characteristic curve (AUC-ROC) and Kappa statistic were applied to evaluate model performance. The results demonstrated that the GARP model (AUC-ROC = 93.5%, Kappa = 0.86) had higher performance accuracy than the QUEST model (AUC-ROC = 89.2%, Kappa = 0.79). The results also indicated that distance to channel, land use, and elevation played major roles in flood hazard determination, whereas population density, quality of buildings, and urban density were the most important factors in terms of vulnerability. These findings demonstrate that machine learning models can help in flood risk mapping, especially in areas where detailed hydraulic and hydrological data are not available

    The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers

    No full text
    Abstract Machine learning models have attracted much research attention for groundwater potential mapping. However, the accuracy of models for groundwater potential mapping is significantly influenced by sample size and this is still a challenge. This study evaluates the influence of sample size on the accuracy of different individual and hybrid models, adaptive neuro-fuzzy inference system (ANFIS), ANFIS-imperial competitive algorithm (ANFIS-ICA), alternating decision tree (ADT), and random forest (RF) to model groundwater potential, considering the number of springs from 177 to 714. A well-documented inventory of springs, as a natural representative of groundwater potential, was used to designate four sample data sets: 100% (D₁), 75% (D₂), 50% (D₃), and 25% (D₄) of the entire springs inventory. Each data set was randomly split into two groups of 30% (for training) and 70% (for validation). Fifteen diverse geo-environmental factors were employed as independent variables. The area under the operating receiver characteristic curve (AUROC) and the true skill statistic (TSS) as two cutoff-independent and cutoff-dependent performance metrics were used to assess the performance of models. Results showed that the sample size influenced the performance of four machine learning algorithms, but RF had a lower sensitivity to the reduction of sample size. In addition, validation results revealed that RF (AUROC = 90.74–96.32%, TSS = 0.79–0.85) had the best performance based on all four sample data sets, followed by ANFIS-ICA (AUROC = 81.23–91.55%, TSS = 0.74–0.81), ADT (AUROC = 79.29–88.46%, TSS = 0.59–0.74), and ANFIS (AUROC = 73.11–88.43%, TSS = 0.59–0.74). Further, the relative slope position, lithology, and distance from faults were the main spring-affecting factors contributing to groundwater potential modelling. This study can provide useful guidelines and a valuable reference for selecting machine learning models when a complete spring inventory in a watershed is unavailable

    A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban flood-inundation

    No full text
    Abstract In regions with lack of hydrological and hydraulic data, a spatial flood modeling and mapping is an opportunity for the urban authorities to predict the spatial distribution and the intensity of the flooding. It helps decision-makers to develop effective flood prevention and management plans. In this study, flood inventory data were prepared based on the historical and field surveys data by Sari municipality and regional water company of Mazandaran, Iran. The collected flood data accompanied with different variables (digital elevation model and slope have been considered as topographic variables, land use/land cover, precipitation, curve number, distance to river, distance to channel and depth to groundwater as environmental variables) were applied to novel hybridized model based on neural network and swarm intelligence-grey wolf algorithm (NN-SGW) to map flood-inundation. Several confusion matrix criteria were used for accuracy evaluation by cutoff-dependent and independent metrics (e.g., efficiency (E), positive predictive value (PPV), negative predictive value (NPV), area under the receiver operating characteristic curve (AUC)). The accuracy of the flood inundation map produced by the NN-SGW model was compared with that of maps produced by four state-of-the-art benchmark models: random forest (RF), logistic model tree (LMT), classification and regression trees (CART), and J48 decision tree (J48DT). The NN-SGW model outperformed all benchmark models in both training (E = 90.5%, PPV = 93.7%, NPV = 87.3%, AUC = 96.3%) and validation (E = 79.4%, PPV = 85.3%, NPV = 73.5%, AUC = 88.2%). As the NN-SGW model produced the most accurate flood-inundation map, it can be employed for robust flood contingency planning. Based on the obtained results from NN-SGW model, distance from channel, distance from river, and depth to groundwater were identified as the most important variables for spatial prediction of urban flood inundation. This work can serve as a basis for future studies seeking to predict flood susceptibility in urban areas using hybridized machine learning (ML) models and can also be applied in other urban areas where flood inundation presents a pressing challenge, and there are some problems regarding required model and availability of input data

    TET:an automated tool for evaluating suitable check-dam sites based on sediment trapping efficiency

    No full text
    Abstract Sediment control is important for supplying clean water. Although check dams control sediment yield, site selection for check dams based on the sediment trapping efficiency (TE) is often complex and time-consuming. Currently, a multi-step trial-and-error process is used to find the optimal sediment TE for check dam construction, which limits this approach in practice. To cope with this challenge, we developed a user-friendly, cost- and time-efficient geographic information system (GIS)-based tool, the trap efficiency tool (TET), in the Python programming language. We applied the tool to two watersheds, the Hableh-Rud and the Poldokhtar, in Iran. To identify suitable sites for check dams, four scenarios (S1: TE ≥ 60%, S2: TE ≥ 70%, S3: TE ≥ 80%, S4: TE ≥ 90%) were tested. TET identified 189, 117, 96, and 77 suitable sites for building check dams in S1, S2, S3, and S4, respectively, in the Hableh-Rud watershed, and 346, 204, 156, and 60 sites in S1, S2, S3, and S4, respectively, in the Poldokhtar watershed. Evaluation of 136 existing check dams in the Hableh-Rud watershed indicated that only 10% and 5% were well-located and these were in the TE classes of 80–90% and ≥90%, respectively. In the Poldokhtar watershed, only 11% and 8% of the 207 existing check dams fell into TE classes 80–90% and ≥90%, respectively. Thus, the conventional approach for locating suitable sites at which check dams should be constructed is not effective at reaching suitable sediment control efficiency. Importantly, TET provides valuable insights for site selection of check dams and can help decision makers avoid monetary losses incurred by inefficient check-dam performance

    Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning algorithms, for the Pole-Doab watershed, Iran

    No full text
    Abstract Land degradation (LD) is a complex process affected by both anthropogenic and natural driving variables, and its prevention has become an essential task globally. The aim of the present study was to develop a new quantitative LD mapping approach using machine learning techniques, benchmark models, and human-induced and socio-environmental variables. We employed four machine learning algorithms [Support Vector Machine (SVM), Multivariate Adaptive Regression Splines (MARS), Generalized Linear Model (GLM), and Dragonfly Algorithm (DA)] for LD risk mapping, based on topographic (n = 7), human-induced (n = 5), and geo-environmental (n = 6) variables, and field measurements of degradation in the Pole-Doab watershed, Iran. We assessed the performance of different algorithms using receiver operating characteristic, Kappa index, and Taylor diagram. The results revealed that the main topographic, geoenvironmental, and human-induced variable was slope, geology, and land use change, respectively. Assessments of model performance indicated that DA had the highest accuracy and efficiency, with the greatest learning and prediction power in LD risk mapping. In LD risk maps produced using SVM, GLM, MARS, and DA, 19.16%, 19.29%, 21.76%, and 22.40%, respectively, of total area in the Pole-Doab watershed had a very high degradation risk. The results of this study demonstrate that in LD risk mapping for a region, topographic, and geological factors (static conditions) and human activities (dynamic conditions, e.g., residential and industrial area expansion) should be considered together, for best protection at watershed scale. These findings can help policymakers prioritize land and water conservation efforts

    RiMARS:an automated river morphodynamics analysis method based on remote sensing multispectral datasets

    No full text
    Abstract Assessment and monitoring of river morphology own an important role in river engineering; since, changes in river morphology including erosion and sedimentation affect river cross-sections and flow processes. An approach for River Morphodynamics Analysis based on Remote Sensing (RiMARS) was developed and tested on the case of Mollasadra dam construction on the Kor River, Iran. Landsat multispectral images obtained from the open USGS dataset are used to extract river morphology dynamics by the Modified Normalized Difference Water Index (MNDWI). RiMARS comes with a river extraction module which is independent of threshold segmentation methods to produce binary-level images. In addition, RiMARS is equipped with developed indices for assessing the morphological alterations. Five characteristics of river morphology (spatiotemporal Sinuosity Index (SI), Absolute Centerline Migration (ACM), Rate of Centerline Migration (RCM), River Linear Pattern (RLP), and Meander Migration Index (MMI)), are applied to quantify river morphology changes. The results indicated that the Kor River centerline underwent average annual migration of 40 cm to the southwest during 1993–2003 (pre-construction impact), 20 cm to the northeast during 2003–2011, and 40 cm to the south-west during 2011–2017 (post-construction impact). Spatially, as the Kor River runs towards the Doroudzan dam, changes in river morphology have increased from upstream to downstream; particularly evident where the river flows in a plain instead of the valley. Based on SI values, there was a 5% change in the straight sinuosity class in the pre-construction period, but an 18% decrease in the straight class during the post-construction period. Here we demonstrate the application of RiMARS in assessing the impact of dam construction on morphometric processes in Kor River, but it can be used to assess other riverine changes, including tracking the unauthorized water consumption using diverted canals. RiMARS can be applied on multispectral images

    Toward the development of deep-learning analyses for snow avalanche releases in Mountain regions

    No full text
    Abstract Snow avalanches impose a considerable threat to infrastructure and human safety in snow bound mountain areas. Nevertheless, the spatial prediction of snow avalanches has received little research attention in many vulnerable parts of the world, particularly in developing countries. The present study investigates the applicability of a stand-alone convolutional neural network (CNN) model, as a deep-learning approach, along with two metaheuristic algorithms including grey wolf optimization (CNN-GWO) and imperialist competitive algorithm (CNN-ICA) in snow avalanche modeling in the Darvan watershed, Iran. The analysis was based on thirteen potential drivers of avalanche occurrence and an inventory map of previously documented avalanche occurrences. The efficiency of models’ performance was evaluated by Area Under the Receiver Operating Characteristic curve (AUC) and the Root Mean Square Error (RMSE). The CNN-ICA model yielded the highest accuracy in both training (AUC= 0.982, RMSE =0.067) and validation (AUC= 0.972, RMSE =0.125) steps, followed by the CNN-GWO model (AUC of 0.975 for training, RMSE of 0.18 for training, AUC of 0.968 for validation, RMSE of 0.157 for validation). However, the standalone CNN model showed lower goodness-of-fit (AUC= 0.864, RMSE =0.22) and predictive performance (AUC= 0.811, RMSE =0.330). The approach utilized in this study is broadly applicable for identifying areas where avalanche hazard is likely to be high and where mitigation measures or corresponding land use planning should be prioritized
    corecore