2 research outputs found
Extended Malaria Parasite Clearance Time in African Children Following Artemisinincombination Therapy Enhances Transmission\ud to Anopheles Mosquitoes
Artemisinin resistance was recently shown to have spread or emerged on the Thailand/Myanmar border. Evidence is accumulating that the parasite clearance time after artemisinin-based combination therapy (ACT) is increasing in settings in Asia and Africa. It is currently unknown if an extended parasite clearance time after ACTs has consequences for the individual patient or confers a higher malaria transmission potential. 298 children in Mbita, Western Kenya, with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL, n = 153) ordihydroartemisinin-piperaquine (DP, n = 145). Parasite carriage post-treatment was determined by microscopy and qPCR, gametocyte carriage by quantitative nucleic acid sequence based amplication. Infectiousness to mosquitoes was determined by mosquito membrane feeding assays. Both drugs were efficacious as judged by standard trial outcomes. Sub-patent residual parasitaemia on day 3 was detected by qPCR in 36.11% (95% CI 25.11 - 48.29) of children treated with AL, and in 30.16% (95% CI 19.23 - 43.02) of children treated with DP. After adjustment for age, treatment arm and enrolment parasite density, children with an extended parasite clearance time were significantly more likely to have microscopically detected recurrent parasitaemia during follow-up (Odds Ratio: 19.51, 95% CI 5.24 - 72.71, p < 0.001). Children with an extended parasite clearance time were also more likely to be infectious to mosquitoes (Odds Ratio 2.76; 95% CI 1.14 - 6.67, p = 0.02) and gave rise to a higher oocyst load in mosquitoes (Incidence Rate Ratio 2.80, 95% CI 1.49 - 5.24, p = 0.001). Our findings indicate that an extended parasite clearance time after ACTs has consequences for the individual patient and for the population at large due to higher transmission potential. The high prevalence of residual subpatent parasitaemia after treatment may be due to novel parasite genotypes with reduced drug sensitivity, inadequate population-level immunity, or the higher sensitivity of qPCR for detection of persisting parasites.\u
Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial.
BACKGROUND: Artemisinin-based combination therapy (ACT) reduces the potential for malaria transmission, compared with non-ACTs. It is unclear whether this effect differs between ACTs. METHODS: A total of 298 children (age, 6 months to 10 years) with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL; n = 153) or dihydroartemisinin-piperaquine (DP; n = 145) in Mbita, a community in western Kenya. Gametocyte carriage was determined by molecular methods on days 0, 1, 2, 3, 7, 14, 28, and 42 after treatment initiation. The gametocyte infectiousness to mosquitoes was determined by mosquito-feeding assays on day 7 after beginning therapy. RESULTS: The cumulative risk of recurrent parasitemia on day 42 after initiation of treatment, unadjusted by polymerase chain reaction findings, was 20.7% (95% confidence interval [CI], 14.4-28.2) for AL, compared with 3.7% (95% CI, 1.2-8.5) for DP (P < .001). The mean duration of gametocyte carriage was 5.5 days (95% CI, 3.6-8.5) for AL and 15.3 days (95% CI, 9.7-24.2) for DP (P = .001). The proportion of mosquitoes that became infected after feeding on blood from AL-treated children was 1.88% (43 of 2293), compared with 3.50% (83 of 2371) for those that fed on blood from DP-treated children (P = .06); the oocyst burden among mosquitoes was lower among those that fed on blood from AL-treated children (P = .005) CONCLUSIONS: While DP was associated with a longer prophylactic time after treatment, gametocyte carriage and malaria transmission to mosquitoes was lower after AL treatment. CLINICAL TRIALS REGISTRATION: NCT00868465