77 research outputs found

    Effect of planting methods and cyanobacterial inoculants on yield, water productivity and economics of rice cultivation

    Get PDF
    The impact of two crop planting methods and of the application of cyanobacterial inoculants on plant growth, yield, water productivity and economics of rice cultivation was evaluated with the help of a split plot designed experiment during the rainy season of 2011 in New Delhi, India. Conventional transplanting and system of rice intensification (SRI) were tested as two different planting methods and seven treatments that considered cyanobacterial inoculants and compost were applied with three repetitions each. Results revealed no significant differences in plant performance and crop yield between both planting methods. However, the application of biofilm based BGA bio-fertiliser + 2/3 N had an overall positive impact on both, plant performance (plant height, number of tillers) and crop yield (number and weight of panicles) as well as on grain and straw yield. Higher net return and a higher benefit-cost ratio were observed in rice fields under SRI planting method, whereas the application of BGA + PGPR + 2/3 N resulted in highest values. Total water productivity and irrigation water productivity was significantly higher under SRI practices (5.95 and 3.67 kg ha^(-1) mm^(-1)) compared to practices of conventional transplanting (3.36 and 2.44), meaning that using SRI method, water saving of about 34 % could be achieved and significantly less water was required to produce one kg of rice. This study could show that a combination of plant growth promoting rhizobacteria (PGPR) in conjunction with BGA and 2/3 dose of mineral N fertiliser can support crop growth performance, crop yields and reduces overall production cost, wherefore this practices should be used in the integrated nutrient management of rice fields in India

    Response of Anabaena species to different nitrogen sources

    Get PDF
    Nitrogenase activity, ammonia excretion and glutamine synthetase (GS) activity were examined in five strains of Anabaena (A. anomala ARM 314, A. fertilissima ARM 742, A. variabilis ARM 310, A. oryzae ARM 313 and A. oryzae ARM 570) in the presence of 2.5 mM NO3-N (KNO3), 2.5 mM NH– 4-N [(NH4)2SO4] and diatomic nitrogen (N2). Ammonium-N was more inhibitory to nitrogenase activity as compared to NO3-N in all the strains. Maximum GS activity was exhibited in NO3-N medium, irrespective of the cyanobacterial strains studied. Uninduced release of ammonia was observed in all the species, with A. oryzae ARM 313 and Anabaena variabilis ARM 310 exhibiting maximum excretion of 0.25–0.31 and 0.27–1.23 µ moles NH– 4 mg Chl–1 respectively on the 15th day of incubation. The glutamine synthetase activity of A. oryzae ARM 313 was relatively very high as compared to Anabaena variabilis ARM 310. There was no nitrate reductase activity in any of the Anabaena sp. grown on NH3-N or N2-N on the 15th day of incubation

    Symptomatic “H” Type Duplex Gallbladder

    Get PDF
    A case of ductular type duplex gallbladder is presented that was diagnosed by magnetic resonance cholangiopancreatography and managed by laparoscopy

    Effect of ageing and single nucleotide polymorphisms associated with the risk of aggressive prostate cancer in a New Zealand population

    Get PDF
    Prostate cancer is one of the most significant male health concerns worldwide, and various researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms are increasingly becoming strong biomarker candidates to identify the susceptibility of individuals to prostate cancer. We carried out risk association of different stages of prostate cancer to a number of single nucleotide polymorphisms to identify the susceptible alleles in a New Zealand population and checked the interaction with environmental factors as well. We identified a number of single nucleotide polymorphisms to have associations specifically to the risk of prostate cancer and aggressiveness of the disease, and also certain single nucleotide polymorphisms to be vulnerable to the reported behavioral factors. We have addressed “special” environmental conditions prevalent in New Zealand, which can be used as a model for a bigger worldwide study

    Optimising nitrogen use efficiency of prilled urea through integrated use of nano-ZnO and green manuring for better productivity, quality and nutritional status of Basmati rice crop

    Get PDF
    In agricultural systems, significant nitrogen (N) losses from traditional fertilizers pose risks to food security and economic stability. An emerging approach to mitigate these losses involves nanoparticles (NPs) coatings onto urea, aiming to enhance N availability and consequently boost crop yields. To explore the most effective and sustainable N management strategies, a field experiment was carried out in Basmati rice at the ICAR-Indian Agricultural Research Institute, New Delhi, India over 2020–2021 in a split-plot design, with two summer green manure (GM) types-Sesbania (G2) and cowpea (G3) and fallow in the main plot and six nitrogen fertilization (NF) modules, i.e., 0 kg N + 5 kg Zn ha−1 through bulk ZnO (N1), N through prilled urea (PU) (N2), N through PU + 5 kg Zn ha−1 through bulk ZnO (N3), 1% bulk ZnO-coated urea (1% BZnCU) (N4), 0.1% nano ZnO-coated urea (0.1% NZnCU) (N5) and 0.2% nano ZnO-coated urea (0.2% NZnCU) (N6) in subplots replicated three times. The objectives of the study was to identify the optimal GM crops and the most effective NF modules on enhancing plant height, dry biomass, grain yield, milling quality, and N, P, K nutrition, as well as nitrogen use efficiency (NUE). Our findings demonstrated that, a significant enhancement in plant height (13.34%) and dry biomass (38.1%) at harvest was observed with the combined application of G2 and N6 when juxtaposed against G1 and N1. The pooled analysis revealed that GM enhanced grain yield by 12.75% in comparison to G1, irrespective of the NF modules employed. The Sesbania was identified as the top-performing GM, registering a yield 17.5% greater than fallow while it was 8.13% for cowpea. Among NF modules, there was a noted 10.03% yield increase when urea was zinc-coated compared to using only urea (N2), and a 33.75% increase against the N1. The application of N6 modules boosted hulling, milling, and head rice recovery by 3.73, 4.45, and 4.98%, respectively, compared to N1. Moreover, combining zinc with urea raised the N content in milled rice by approximately 9.1% and heightened the N, P, and K concentration in the straw by 22.8, 4.44, and 11.8%, and total N, P, and K uptake by 5.72, 3.33, and 11.7%, in comparison to the combined effect of N1 and N2. Considering the NUE metrics, such as partial factor productivity (PFP), agronomic efficiency (AE), recovery efficiency (RE), and physiological efficiency (PE), the application of GM showcased superior performance in PFP and RE against the G1, while AE and PE remained unaffected. The G2 as a GM, performed best in PFP and RE. The N5 module delineated the most substantial advancements in NUE indices, despite being comparable to N6. In conclusion, the adoption of Sesbania as a green manure crops, coupled with the 0.2% nano ZnO-coated urea module, is identified as an efficient method for maximizing growth, yield, milling attributes, nutrient assimilation, and overall NUE in the Basmati rice

    Enhancing physiological metrics, yield, zinc bioavailability, and economic viability of Basmati rice through nano zinc fertilization and summer green manuring in semi–arid South Asian ecosystem

    Get PDF
    During the summer and rainy seasons (April-October) of 2020 and 2021, two consecutive field experiments were conducted at the research farm of the ICAR-Indian Agricultural Research Institute, New Delhi, India. In this study, we examined the effects of summer green manuring crops (GM) and a variety of zinc fertilizers (ZnF) on Basmati rice (Oryza sativa L.) growth, physiological development, yield response, zinc nutrition and economic returns. A combination of GM residues and nano zinc fertilization helped significantly enhancing Basmati rice’s growth and its physiological development. Following the incorporation of Sesbania aculeata (Sesbania), successive Basmati rice physiological parameters were significantly improved, as well as grain, straw, biological yields, harvest index and economic returns. The highest Zn content of 15.1 mg kg -1 and the lowest of 11.8 mg kg -1 in milled rice grain were recorded in Sesbania green manuring (G2) and control i.e., in the fallow (G1), respectively. Coating onto urea with 0.2% nano zinc oxide (NZnCU) was observed to be more effective than other zinc sources in terms of growth parameters, yield attributes, zinc nutrition, grain and straw yields for succeeding Basmati rice crop; however, the effects were comparable to those of bulk zinc oxide-coated urea (BZnCU) of 1%. The highest Zn content of 15.1 mg kg -1 was recorded with the application of 1% BZnCU and the lowest of 11.96 mg kg -1 with the soil application of 5 kg Zn ha -1 through bulk ZnO in the milled rice grain. Application of 1% BZnCU led to a 26.25% increase in Zn content of milled rice grain compared to soil application of 5 kg Zn ha -1 through bulk ZnO. As a result, the combination of inclusion of Sesbania aculeata (Sesbania) residue and 0.2% NZnCU was identified as the most effective treatment, for Basmati rice growth and physiological development. A combination of nano Zn fertilization in conjunction with the incorporation of green manure can be advocated for better growth, physiological performance, zinc dense grains, and higher profitability of Basmati rice for farmers and consumers

    Investigating early iron finds from Mayiladumparai Tamil Nadu

    Get PDF
    The paper covers preliminary metallurgical investigations related to the ferrous metal finds excavated at the Iron Age stie of Mayiladumparai by Tamil Nadu State Department of Archaeolog

    The impact of different fertiliser management options and cultivars on nitrogen use efficiency and yield for rice cropping in the Indo-Gangetic Plain: two seasons of methane, nitrous oxide and ammonia emissions

    Get PDF
    This study presents detailed crop and gas flux data from two years of rice production at the experimental farm of the ICAR-Indian Agricultural Research Institute, New Delhi, India. In comparing 4 nitrogen (N) fertiliser regimes across 4 rice cultivars (CRD 310, IR-64, MTU 1010, P-44), we have added to growing evidence of the environmental costs of rice production in the region. The study shows that rice cultivar can impact yields of both grain, and total biomass produced in given circumstances, with the CRD 310 cultivar showing consistently high nitrogen use efficiency (NUE) for total biomass compared with other tested varieties, but not necessarily with the highest grain yield, which was P-44 in this experiment. While NUE of the rice did vary depending on experimental treatments (ranging from 41% to 73%), 73%), this did not translate directly into the reduction of emissions of ammonia (NH3) and nitrous oxide (N2O). Emissions were relatively similar across the different rice cultivars regardless of NUE. Conversely, agronomic practices that reduced total N losses were associated with higher yield. In terms of fertiliser application, the outstanding impact was of the very high methane (CH4) emissions as a result of incorporating farmyard manure (FYM) into rice paddies, which dominated the overall effect on global warming potential. While the use of nitrification and urease inhibiting substances decreased N2O emissions overall, NH3 emissions were relatively unaffected (or slightly higher). Overall, the greatest reduction in greenhouse gas (GHG) emissions came from reducing irrigation water added to the fields, resulting in higher N2O, but significantly less CH4 emissions, reducing net GHG emission compared with continuous flooding. Overall, genetic differences generated more variation in yield and NUE than agronomic management (excluding controls), whereas agronomy generated larger differences than genetics concerning gaseous losses. This study suggests that a mixed approach needs to be applied when attempting to reduce pollution and global warming potential from rice production and potential pollution swapping and synergies need to be considered. Finding the right balance of rice cultivar, irrigation technique and fertiliser type could significantly reduce emissions, while getting it wrong can result in considerably poorer yields and higher pollution

    Not Available

    No full text
    Not AvailableMicronutrients are essential factors for human health and integral for plant growth and development. Among the micronutrients, zinc (Zn) and iron (Fe) deficiency in dietary food are associated with malnutrition symptoms (hidden hunger), which can be overcome through biofortification. Different strategies, such as traditional and molecular plant breeding or application of chemical supplements along with fertilizers, have been employed to develop biofortified crop varieties with enhanced bioavailability of micronutrients. The use of microorganisms to help the crop plant in more efficient and effective uptake and translocation of Zn and Fe is a promising option that needs to be effectively integrated into agronomic or breeding approaches. However, this is less documented and forms the subject of our review. The major findings related to the mobilization of micronutrients by microorganisms highlighted the significance of (1) acidification of rhizospheric soil and (2) stimulation of secretion of phenolics. Plant– microbe interaction studies illustrated novel inferences related to the (3) modifications in the root morphology and architecture, (4) reduction of phytic acid in food grains, and (5) upregulation of Zn/Fe transporters. For the biofortification of Zn and Fe, formulation(s) of such microbes (bacteria or fungi) can be explored as seed priming or soil dressing options. Using the modern tools of transcriptomics, metaproteomics, and genomics, the genes/proteins involved in their translocation within the plants of major crops can be identified and engineered for improving the efficacy of plant–microbe interactions. With micronutrient nutrition being of global concern, it is imperative that the synergies of scientists, policy makers, and educationists focus toward developing multipronged approaches that are environmentally sustainable, and integrating such microbial options into the mainframe of integrated farming practices in agriculture. This can lead to better quality and yields of produce, and innovative approaches in food processing can deliver cost-effective nutritious food for the undernourished populationsNot Availabl
    corecore