2 research outputs found

    Endothelial dysfunction and heart failure with preserved ejection fraction—an updated review of the literature

    No full text
    Heart failure (HF) is a clinical syndrome consisting of typical symptoms and signs due to structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressures and/or inadequate cardiac output. The vascular system plays a crucial role in the development and progression of HF regardless of ejection fraction, with endothelial dysfunction (ED) as one of the principal features of HF. The main ED manifestations (i.e., impaired endothelium-dependent vasodilation, increased oxidative stress, chronic inflammation, leukocyte adhesion, and endothelial cell senescence) affect the systemic and pulmonary haemodynamic and the renal and coronary circulation. The present review is aimed to discuss the contribution of ED to HF pathophysiology—in particular, HF with preserved ejection fraction—ED role in HF patients, and the possible effects of pharmacological and non-pharmacological approaches. For this purpose, relevant data from a literature search (PubMed, Scopus, EMBASE, and Medline) were reviewed. As a result, ED, assessed via venous occlusion plethysmography or flow-mediated dilation, was shown to be independently associated with poor outcomes in HF patients (e.g., mortality, cardiovascular events, and hospitalization due to worsening HF). In addition, SGLT2 inhibitors, endothelin antagonists, endothelial nitric oxide synthase cofactors, antioxidants, and exercise training were shown to positively modulate ED in HF. Despite the need for future research to better clarify the role of the vascular endothelium in HF, ED represents an interesting and promising potential therapeutic target.</p

    Exercise Intolerance in Heart Failure with Preserved Ejection Fraction

    No full text
    Exercise intolerance represents a typical feature of heart failure with preserved ejection fraction (HFpEF), and is associated with a poor quality of life, frequent hospitalizations, and increased all-cause mortality. The cardiopulmonary exercise test is the best method to quantify exercise intolerance, and allows detection of the main mechanism responsible for the exercise limitation, influencing treatment and prognosis. Exercise training programs improve exercise tolerance in HFpEF. However, studies are needed to identify appropriate type and duration. This article discusses the pathophysiology of exercise limitation in HFpEF, describes methods of determining exercise tolerance class, and evaluates prognostic implications and potential therapeutic strategies
    corecore