3 research outputs found

    Proceedings of the Third Cryocooler Conference

    Get PDF
    Mechanical and non-mechanical types of small cryocoolers in the temperature range of 4 to 80 K are discussed. Applications of these small cryocoolers include the cooling of infrared detectors, cryopumps, small superconducting devices and magnets, and electronic devices

    A simple, first step to the optimization of regenerator geometry

    Get PDF
    This paper presents a simplified set of equations for calculating and optimizing regenerator geometries. A number of competing parameters must be accounted for in the design of a regenerator. To obtain high values of effectiveness, there is need for a large surface area for heat transfer and high heat capacity. The void volume should be small to maintain the pressure ratio in the entire system. Moreover, the pressure drop should be small compared to the absolute pressure. With the assumptions made here, the calculations can be done with a hand calculator. The equations show that the optimum regenerator length, hydraulic radius, and porosity are independent of mass flow rate and the gas cross sectional area is proportional to the mass flow rate. It is shown that using gas gaps between parallel plates produces a significantly better regenerator than is possible with packed spheres or screens, particularly at temperatures below approximately 50%
    corecore