130 research outputs found

    Elevated white cell count in acute coronary syndromes: relationship to variants in inflammatory and thrombotic genes

    Get PDF
    BACKGROUND: Elevated white blood cell counts (WBC) in acute coronary syndromes (ACS) increase the risk of recurrent events, but it is not known if this is exacerbated by pro-inflammatory factors. We sought to identify whether pro-inflammatory genetic variants contributed to alterations in WBC and C-reactive protein (CRP) in an ACS population. METHODS: WBC and genotype of interleukin 6 (IL-6 G-174C) and of interleukin-1 receptor antagonist (IL1RN intronic repeat polymorphism) were investigated in 732 Caucasian patients with ACS in the OPUS-TIMI-16 trial. Samples for measurement of WBC and inflammatory factors were taken at baseline, i.e. Within 72 hours of an acute myocardial infarction or an unstable angina event. RESULTS: An increased white blood cell count (WBC) was associated with an increased C-reactive protein (r = 0.23, p < 0.001) and there was also a positive correlation between levels of β-fibrinogen and C-reactive protein (r = 0.42, p < 0.0001). IL1RN and IL6 genotypes had no significant impact upon WBC. The difference in median WBC between the two homozygote IL6 genotypes was 0.21/mm(3 )(95% CI = -0.41, 0.77), and -0.03/mm(3 )(95% CI = -0.55, 0.86) for IL1RN. Moreover, the composite endpoint was not significantly affected by an interaction between WBC and the IL1 (p = 0.61) or IL6 (p = 0.48) genotype. CONCLUSIONS: Cytokine pro-inflammatory genetic variants do not influence the increased inflammatory profile of ACS patients

    ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of angiotensin-converting enzyme (<it>ACE</it>) gene insertion/deletion (<it>I/D</it>) polymorphism in modifying the response to treatment modalities in coronary artery disease is controversial.</p> <p>Methods</p> <p>PubMed was searched and a database of 58 studies with detailed information regarding <it>ACE I/D </it>polymorphism and response to treatment in coronary artery disease was created. Eligible studies were synthesized using meta-analysis methods, including cumulative meta-analysis. Heterogeneity and study quality issues were explored.</p> <p>Results</p> <p>Forty studies involved invasive treatments (coronary angioplasty or coronary artery by-pass grafting) and 18 used conservative treatment options (including anti-hypertensive drugs, lipid lowering therapy and cardiac rehabilitation procedures). Clinical outcomes were investigated by 11 studies, while 47 studies focused on surrogate endpoints. The most studied outcome was the restenosis following coronary angioplasty (34 studies). Heterogeneity among studies (p < 0.01) was revealed and the risk of restenosis following balloon angioplasty was significant under an additive model: the random effects odds ratio was 1.42 (95% confidence interval:1.07–1.91). Cumulative meta-analysis showed a trend of association as information accumulates. The results were affected by population origin and study quality criteria. The meta-analyses for the risk of restenosis following stent angioplasty or after angioplasty and treatment with angiotensin-converting enzyme inhibitors produced non-significant results. The allele contrast random effects odds ratios with the 95% confidence intervals were 1.04(0.92–1.16) and 1.10(0.81–1.48), respectively. Regarding the effect of <it>ACE I/D </it>polymorphism on the response to treatment for the rest outcomes (coronary events, endothelial dysfunction, left ventricular remodeling, progression/regression of atherosclerosis), individual studies showed significance; however, results were discrepant and inconsistent.</p> <p>Conclusion</p> <p>In view of available evidence, genetic testing of <it>ACE I/D </it>polymorphism prior to clinical decision making is not currently justified. The relation between <it>ACE </it>genetic variation and response to treatment in CAD remains an unresolved issue. The results of long-term and properly designed prospective studies hold the promise for pharmacogenetically tailored therapy in CAD.</p

    Genome Wide Association (GWA) Study for Early Onset Extreme Obesity Supports the Role of Fat Mass and Obesity Associated Gene (FTO) Variants

    Get PDF
    Background. Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity. Methodology/Principal Findings. a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency $10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13610 27, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95 % confidence interval (CI) 1.22–2.27; OR TT 2.76, 95 % CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p,0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium

    Additive effect of LRP8/APOER2 R952Q variant to APOE ε2/ε3/ε4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study

    Get PDF
    BACKGROUND: The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) epsilon2/epsilon3/epsilon4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI. METHODS: In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE epsilon2/epsilon3/epsilon4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI). RESULTS: Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels +/- SD = RR: 0.045 +/- 0.020, RQ: 0.044 +/- 0.014, QQ: 0.040 +/- 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 +/- 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 +/- 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95\%CI 1.08-13.9 as compared with RR/non-carriers E4). CONCLUSION: Our data suggest that LRP8 R952Q variant may have an additive effect to APOE epsilon2/epsilon3/epsilon4 genotype in determining ApoE concentrations and risk of MI in an Italian population

    Sequence variation in telomerase reverse transcriptase (TERT) as a determinant of risk of cardiovascular disease: the Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    Abstract Background Telomerase reverse transcriptase (TERT) maintains telomere ends during DNA replication by catalyzing the addition of short telomere repeats. The expression of telomerase is normally repressed in somatic cells leading to a gradual shortening of telomeres and cellular senescence with aging. Interindividual variation in leukocyte telomere length has been previously associated with susceptibility to cardiovascular disease. The aim of the present study was to determine whether six variants in the TERT gene are associated with risk of incident coronary heart disease, incident ischemic stroke, and mortality in participants in the biracial population-based Atherosclerosis Risk in Communities (ARIC) study, including rs2736100 that was found to influence mean telomere length in a genome-wide analysis. Methods ARIC is a prospective study of the etiology and natural history of atherosclerosis in 15,792 individuals aged 45 to 64 years at baseline in 1987–1989. Haplotype tagging SNPs in TERT were genotyped using a custom array containing nearly 49,000 SNPs in 2,100 genes associated with cardiovascular and metabolic phenotypes. Cox proportional hazards models were used to assess the association between the TERT polymorphisms and incident cardiovascular disease and mortality over a 20-year follow-up period in 8,907 whites and 3,022 African-Americans with no history of disease at the baseline examination, while individuals with prevalent cardiovascular disease were not excluded from the analyses of mortality. Results After adjustment for age and gender, and assuming an additive genetic model, rs2736122 and rs2853668 were nominally associated with incident coronary heart disease (hazards rate ratio = 1.20, p = 0.02, 95 % confidence interval = 1.03– 1.40) and stroke (hazards rate ratio = 1.17, p = 0.05, 95 % confidence interval = 1.00 - 1.38), respectively, in African-Americans. None of the variants was significantly associated with cardiovascular disease in white study participants or with mortality in either racial group. Conclusions Replication in additional population-based samples combined with genotyping of polymorphisms in other genes involved in maintenance of telomere length may help to determine whether genetic variants associated with telomere homeostasis influence the risk of cardiovascular disease in middle-aged adults

    C-Reactive Protein (CRP) Gene Polymorphisms, CRP Levels, and Risk of Incident Coronary Heart Disease in Two Nested Case-Control Studies

    Get PDF
    Background: C-reactive protein (CRP), an acute phase reactant and marker of inflammation, has been shown to predict risk of incident cardiovascular events. However, few studies have comprehensively examined six common single-nucleotide polymorphisms (SNPs) in the CRP gene, haplotypes, and plasma CRP levels with risk of coronary heart disease (CHD). Methods and Findings: We conducted parallel nested case-control studies within two ongoing, prospective cohort studies of U.S. women (Nurses' Health Study) and men (Health Professionals Follow-up Study). Blood samples were available in a subset of 32,826 women and 18,225 men for biomarker and DNA analyses. During 8 and 6 years of follow-up, 249 women and 266 men developed incident nonfatal myocardial infarction or fatal CHD, and controls (498 women, 531 men) were matched 2:1 on age, smoking, and date of blood draw from participants free of cardiovascular disease at the time the case was diagnosed. Among both women and men, minor alleles were significantly associated with higher CRP levels for SNPs 1919A greater than T and 4741G greater than C, but associated with lower CRP levels for SNPs 2667G greater than C and 3872C greater than T. SNP 2667G greater than C was individually associated with increased risk of CHD in both women [OR 1.57 (95% CI 1.01–2.44); p = 0.047] and men [1.93 (95% CI 1.30–2.88); p = 0.001]. Two of the five common haplotypes were associated with lower CRP levels, and Haplotype 4 which included minor alleles for 2667 and 3872 was associated with significantly lower CRP levels and an elevated risk of CHD. The remaining SNPs or haplotypes were not associated with CHD in both populations. Conclusions: Common variation in the CRP gene was significantly associated with plasma CRP levels; however, the association between common SNPs and CRP levels did not correspond to a predicted change in CHD risk. The underlying inflammatory processes which predict coronary events cannot be captured solely by variation in the CRP gene

    Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphodiesterase 4D (PDE4D) gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT) and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis.</p> <p>Methods</p> <p>Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men). Genotype distribution was compared among the high-risk (plaque index ≥ 4), low-risk (index = 1-3), and reference (index = 0) groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls) with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect.</p> <p>Results</p> <p>In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034) for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008). For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032) for a thicker IMT at the common carotid artery compared with the (AA + AT) genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025) but not in women (p = 0.27).</p> <p>Conclusions</p> <p>The present study demonstrates a sex-differential effect of PDE4D on IMT, plaque index and stroke, which highlights its influence on various aspects of atherogenesis.</p

    Effect of the rs2259816 polymorphism in the HNF1A gene on circulating levels of c-reactive protein and coronary artery disease (the ludwigshafen risk and cardiovascular health study)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>C-reactive protein is a well established marker of inflammation and has been used to predict future cardiovascular disease. It is still controversial if it plays an active role in the development of cardiovascular disease. Recently, polymorphisms in the gene for HNF1α have been linked to the levels of C-reactive protein and coronary artery disease.</p> <p>Methods</p> <p>We investigated the association of the rs2259816 polymorphism in the HNF1A gene with the circulating level of C-reactive protein and the hazard of coronary artery disease in the LURIC Study cohort.</p> <p>Results</p> <p>Compared to CC homozygotes, the level of C-reactive protein was decreased in carriers of at least one A-allele. Each A-allele decreased CRP by approximately 15%. The odds ratio for coronary artery disease was only very slightly increased in carriers of the A-allele and this association did not reach statistical significance.</p> <p>Conclusions</p> <p>In the LURIC Study cohort the A-allele of rs2259816 is associated with decreased CRP but not with coronary artery disease.</p

    Extended Interferon-Alpha Therapy Accelerates Telomere Length Loss in Human Peripheral Blood T Lymphocytes

    Get PDF
    BACKGROUND: Type I interferons have pleiotropic effects on host cells, including inhibiting telomerase in lymphocytes and antiviral activity. We tested the hypothesis that long-term interferon treatment would result in significant reduction in average telomere length in peripheral blood T lymphocytes. METHODS/PRINCIPAL FINDINGS: Using a flow cytometry-based telomere length assay on peripheral blood mononuclear cell samples from the Hepatitis-C Antiviral Long-term Treatment against Cirrhosis (HALT-C) study, we measured T cell telomere lengths at screening and at months 21 and 45 in 29 Hepatitis-C virus infected subjects. These subjects had failed to achieve a sustained virologic response following 24 weeks of pegylated-interferon-alpha plus ribavirin treatment and were subsequently randomized to either a no additional therapy group or a maintenance dose pegylated-IFNalpha group for an additional 3.5 years. Significant telomere loss in naive T cells occurred in the first 21 months in the interferon-alpha group. Telomere losses were similar in both groups during the final two years. Expansion of CD8(+)CD45RA(+)CD57(+) memory T cells and an inverse correlation of alanine aminotransferase levels with naive CD8(+) T cell telomere loss were observed in the control group but not in the interferon-alpha group. Telomere length at screening inversely correlated with Hepatitis-C viral load and body mass index. CONCLUSIONS/SIGNIFICANCE: Sustained interferon-alpha treatment increased telomere loss in naive T cells, and inhibited the accumulation of T cell memory expansions. The durability of this effect and consequences for immune senescence need to be defined

    Combined Effect of Hemostatic Gene Polymorphisms and the Risk of Myocardial Infarction in Patients with Advanced Coronary Atherosclerosis

    Get PDF
    BACKGROUND: Relative little attention has been devoted until now to the combined effects of gene polymorphisms of the hemostatic pathway as risk factors for Myocardial Infarction (MI), the main thrombotic complication of Coronary Artery Disease (CAD). The aim of this study was to evaluate the combined effect of ten common prothrombotic polymorphisms as a determinant of MI. METHODOLOGY/PRINCIPAL FINDINGS: We studied a total of 804 subjects, 489 of whom with angiographically proven severe CAD, with or without MI (n = 307; n = 182; respectively). An additive model considering ten common polymorphisms [Prothrombin 20210G>A, PAI-1 4G/5G, Fibrinogen beta -455G>A, FV Leiden and "R2", FVII -402G>A and -323 del/ins, Platelet ADP Receptor P2Y12 -744T>C, Platelet Glycoproteins Ia (873G>A), and IIIa (1565T>C)] was tested. The prevalence of MI increased linearly with an increasing number of unfavorable alleles (chi(2) for trend = 10.68; P = 0.001). In a multiple logistic regression model, the number of unfavorable alleles remained significantly associated with MI after adjustment for classical risk factors. As compared to subjects with 3-7 alleles, those with few (/=8) alleles had an increased MI risk (OR 2.49, 95%CIs 1.03-6.01). The number of procoagulant alleles correlated directly (r = 0.49, P = 0.006) with endogenous thrombin potential. CONCLUSIONS: The combination of prothrombotic polymorphisms may help to predict MI in patients with advanced CAD
    corecore