487 research outputs found
An unexpected evolution of symptomatic mild middle cerebral artery (MCA) stenosis: asymptomatic occlusion
<p>Abstract</p> <p>Background</p> <p>The intracranial localization of large artery disease is recognized as the main cause of ischemic stroke in the world, considering all countries, although its global burden is widely underestimated. Indeed it has been reported more frequently in Asians and African-American people, but the finding of intracranial stenosis as a cause of ischemic stroke is relatively common also in Caucasians. The prognosis of patients with stroke due to intracranial steno-occlusion is strictly dependent on the time of recanalization. Moreover, the course of the vessel involvement is highly dynamic in both directions, improvement or worsening, although several data are derived from the atherosclerotic subtype, compared to other causes.</p> <p>Case description</p> <p>We report the clinical, neurosonological and neuroradiological findings of a young woman, who came to our Stroke Unit because of the abrupt onset of aphasia during her work. An urgent neurosonological examination showed a left M1 MCA stenosis, congruent with the presenting symptoms; magnetic resonance imaging confirmed this finding and identified an acute ischemic lesion on the left MCA territory. The past history of the patient was significant only for a hyperinsulinemic condition, treated with metformine, and a mild overweight. At this time a selective cerebral angiography was not performed because of the patient refusal and she was discharged on antiplatelet and lipid-lowering therapy, having failed to identify autoimmune or inflammatory diseases. Within 1 month, she went back to our attention because of the recurrence of aphasia, lasting about ten minutes. Neuroimaging findings were unchanged, but the patient accepted to undergo a selective cerebral angiography, which showed a mild left distal M1 MCA stenosis.</p> <p>During the follow-up the patient did not experienced any recurrence, but a routine neurosonological examination found an unexpected evolution of the known MCA stenosis, i.e. left M1 MCA occlusion. Neuroradiological imaging did not identify new lesions of the brain parenchyma and a repeated selective cerebral angiography confirmed the left M1 MCA occlusion.</p> <p>Conclusions</p> <p>Regardless of the role of metabolic and/or inflammatory factors on the aetiology of the intracranial stenosis in this case, the course of the vessel disease was unexpected and previously unreported in the literature at our knowledge.</p
What went wrong? The flawed concept of cerebrospinal venous insufficiency
In 2006, Zamboni reintroduced the concept that chronic impaired venous outflow of the central nervous system is associated with multiple sclerosis (MS), coining the term of chronic cerebrospinal venous insufficiency ('CCSVI'). The diagnosis of 'CCSVI' is based on sonographic criteria, which he found exclusively fulfilled in MS. The concept proposes that chronic venous outflow failure is associated with venous reflux and congestion and leads to iron deposition, thereby inducing neuroinflammation and degeneration. The revival of this concept has generated major interest in media and patient groups, mainly driven by the hope that endovascular treatment of 'CCSVI' could alleviate MS. Many investigators tried to replicate Zamboni's results with duplex sonography, magnetic resonance imaging, and catheter angiography. The data obtained here do generally not support the 'CCSVI' concept. Moreover, there are no methodologically adequate studies to prove or disprove beneficial effects of endovascular treatment in MS. This review not only gives a comprehensive overview of the methodological flaws and pathophysiologic implausibility of the 'CCSVI' concept, but also summarizes the multimodality diagnostic validation studies and open-label trials of endovascular treatment. In our view, there is currently no basis to diagnose or treat 'CCSVI' in the care of MS patients, outside of the setting of scientific research
Spontaneous intracranial arterial dissection in the young: diagnosis by CT angiography
BACKGROUND: Spontaneous carotid artery dissections have been rarely reported in children. Diagnosis has traditionally been confirmed by catheter arteriography. More recently diagnosis has been made by magnetic resonance imaging and magnetic resonance angiography; however the sensitivity of these techniques has yet to be determined. The authors are unaware of reports of carotid dissection confirmed by dynamic computed tomography (computerized tomographic arteriography) in the young. CASE PRESENTATION: We recently evaluated a fourteen year-old male following the development of transient neurologic symptoms. There was no antecedent illness or trauma. Dynamic computed tomography revealed an intracranial dissection involving the supraclinoid segment of the left internal carotid artery (confirmed by catheter arteriography). Studies for vasculitis, pro-thrombotic states, and defects of collagen were negative. CONCLUSION: Spontaneous carotid artery dissection is a potential cause of transient neurological symptoms and ischemic stroke in the pediatric population. Dynamic computed tomography appears to be a reliable diagnostic tool which can lead to early diagnosis
Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seagliderâ„¢
In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species
Mobile health in adults with congenital heart disease: Current use and future needs
Objective Many adults with congenital heart disease (CHD) are affected lifelong by cardiac events, particularly arrhythmias and heart failure. Despite the care provided, the cardiac event rate remains high. Mobile health (mHealth) brings opportunities to enhance daily monitoring and hence timely response in an attempt to improve outcome. However, it is not known if adults with CHD are currently using mHealth and what type of mHealth they may need in the near future. Methods Consecutive adult patients with CHD who visited the outpatient clinic at the Academic Medical Center in Amsterdam were asked to fill out questionnaires. Exclusion criteria for this study were mental impairment or inability to read and write Dutch. Results All 118 patients participated (median age 40 (range 18–78) years, 40 % male, 49 % symptomatic) and 92 % owned a smartphone. Whereas only a small minority (14 %) of patients used mHealth, the large majority (75 %) were willing to start. Most patients wanted to use mHealth in order to receive more information on physical health, and advice on progression of symptoms or signs of deterioration. Analyses on age, gender and complexity of defect showed significantly less current smartphone usage at older age, but no difference in interest or preferences in type of mHealth application for the near future. Conclusion The relatively young adult CHD population only rarely uses mHealth, but the majority are motivated to start using mHealth. New mHealth initiatives are required in these patients with a chronic condition who need lifelong surveillance in order to reveal if a reduction in morbidity and mortality and improvement in quality of life can be achieved
Monte Carlo simulations of membrane signal transduction events: Effect of receptor blockers on G-protein activation
Cells have evolved elaborate strategies for sensing, responding to, and interacting with their environment. In many systems, interaction of cell surface receptors with extracellular ligand can activate cellular signal transduction pathways leading to G-protein activation and calcium mobilization. In BC 3 H1 smooth muscle-like cells, we find that the speed of calcium mobilization as well as the fraction of cells which mobilize calcium following phenylephrine stimulation is dependent upon receptor occupation. To determine whether receptor inactivation affects calcium mobilization, we use the receptor antagonist prazosin to block a fraction of cell surface receptors prior to phenylephrine stimulation. For cases of equal receptor occupation by agonist, cells with inactivated or blocked receptors show diminished calcium mobilization following phenylephrine stimulation as compared to cells without inactivated receptors. Ligand/receptor binding and two-dimensional diffusion of receptors and G-proteins in the cell membrane are studied using a Monte Carlo model. The model is used to determine if receptor inactivation affects G-protein activation and thus the following signaling events for cases of equal equilibrium receptor occupation by agonist. The model predicts that receptor inactivation by antagonist binding results in lower G-protein activation not only by reducing the number of receptors able to bind agonist but also by restricting the movement of agonist among free receptors. The latter process is important to increasing the access of bound receptors to G-proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43997/1/10439_2006_Article_BF00000009.pd
Limb-shaking transient ischemic attacks: case report and review of literature
BACKGROUND: Limb shaking Transient Ischemic Attack is a rare manifestation of carotid-occlusive disease. The symptoms usually point towards a seizure like activity and misdiagnosed as focal seizures. On careful history the rhythmic seizure like activity reveals no Jacksonian march mainly precipitated by maneuvers which lead to carotid compression. We here present a case of an elderly gentleman who was initially worked up as suffering from epileptic discharge and then later on found to have carotid occlusion. CASE PRESENTATION: Elderly gentleman presented with symptoms of rhythmic jerky movements of the left arm and both the lower limbs. Clinical suspicion of focal epilepsy was made and EEG, MRI-Brain with MRA were done. EEG and MRI-Brain revealed normal findings but the MRA revealed complete occlusion of right internal carotid artery. On a follow-up visit jerky movements of the left arm were precipitated by hyperextension and a tremor of 3–4 Hz was revealed. Based on this the diagnosis of low flow TIA was made the patient was treated conservatively with adjustment of his anti-hypertensive and anti-platelet medications. CONCLUSION: Diagnosis of limb-shaking TIA is important and should be differentiated from other disorders presenting as tremors. Timely diagnosis is important as these patients are shown to benefit from reperfusion procedures either surgical or radiological reducing their risk of stroke
Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing
Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
- …