40 research outputs found

    Global instability in the Ghil--Sellers model

    Get PDF
    The Ghil--Sellers model, a diffusive one-dimensional energy balance model of Earth's climate, features---for a considerable range of the parameter descriptive of the intensity of the incoming radiation---two stable climate states, where the bistability results from the celebrated ice-albedo feedback. The warm state is qualitatively similar to the present climate, while the cold state corresponds to snowball conditions. Additionally, in the region of bistability, one can find unstable climate states. We find such unstable states by applying for the first time in a geophysical context the so-called edge tracking method, which has been used for studying multiple coexisting states in shear flows. This method has a great potential for studying the global instabilities in multistable systems, and for providing crucial information on the possibility of transitions when forcing is present. We examine robustness, efficiency, and accuracy properties of the edge tracking algorithm. We find that the procedure is the most efficient when taking a single bisection per cycle. Due to the strong diffusivity of the system, the transient dynamics, is approximately confined to the heteroclininc trajectory, connecting the fixed unstable and stable states, after relatively short transient times. Such a constraint dictates a functional relationship between observables. We characterize such a relationship between the global average temperature and a descriptor of nonequilibrium thermodynamics, the large scale temperature gradient between low and high latitudes. We find that a maximum of the temperature gradient is realized at the same value of the average temperature, about 270 K, largely independent of the strength of incoming solar radiation. Due to this maximum, a transient increase and nonmonotonic evolution of the temperature gradient is possible and not untypical. We also examine the structural properties of the system defined by bifurcation diagrams describing the equilibria depending on a system parameter of interest, here the solar strength. We construct new bifurcation diagrams in terms of quantities relevant for describing thermodynamic properties such as the temperature gradient and the material entropy production due to heat transport. We compare our results for the energy balance model to results for the intermediate complexity general circulation model the Planet Simulator and find an interesting qualitative agreement

    Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study

    Get PDF
    We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45864/1/382_2006_Article_127.pd

    On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Full text link
    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO 2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45863/1/382_2006_Article_111.pd

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089
    corecore