28 research outputs found

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link

    CD101 surface expression discriminates potency among murine FoxP3+ regulatory T cells.

    No full text
    CD4+CD25+FoxP3+ regulatory T cells (Treg) have been shown to be protective in animal models of autoimmunity and acute graft-vs-host disease. However, owing to the functional heterogeneity among CD4+CD25+ T cells, surface markers expressed selectively on functionally active Treg would be useful for purposes of identifying and isolating such cells. We generated a rabbit mAb against murine CD101, a transmembrane glycoprotein involved in T cell activation. Among freshly isolated T cells, CD101 was detected on 25-30% of CD4+CD25+ Treg and approximately 20% of conventional memory T cells. CD101(high) Treg displayed greater in vitro suppression of alloantigen-driven T cell proliferation as compared with CD101(low) Treg. In a model of graft-vs-host disease induced by allogeneic bone marrow transplantation in vivo bioluminescence imaging demonstrated reduced expansion of donor-derived luciferase-labeled conventional T cells in mice treated with CD101(high) Treg, compared with CD101(low) Treg. Moreover, treatment with CD101(high) Treg resulted in improved survival, reduced proinflammatory cytokine levels and reduced end organ damage. Among the CD101(high) Treg all of the in vivo suppressor activity was contained within the CD62L(high) subpopulation. We conclude that CD101 expression distinguishes murine Treg with potent suppressor activity

    Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells.

    No full text
    Contains fulltext : 52757.pdf (publisher's version ) (Closed access)Graft-versus-host-disease (GVHD) is the most common cause of poor outcome after allogeneic stem cell transplantation (SCT). Of late, exploitation of FOXP3(+) regulatory T-cell (T(REG)) function is emerging as a promising strategy in suppression of GVHD, while preserving graft-versus-leukemia (GVL). Cyclosporine and rapamycin reduce the expansion of effector T cells by blocking interleukin (IL)-2, but signaling by IL-2 is pivotal for T(REG) homeostasis. The resolution of GVHD is critically dependent on thymus-dependent reconstitution of the immunoregulatory system. Thus, there has been concern about the impact of blocking IL-2 signaling by immunosuppressive agents on T(REG) homeostasis. Here we demonstrate in a mouse model that in contrast to rapamycin, cyclosporine compromises not only the thymic generation of CD4(+)CD25(+)FoxP3(+) T cells but also their homeostatic behavior in peripheral immune compartments. Treatment with cyclosporine resulted in a sharp reduction of peripheral CD25(+)FoxP3(+) T cells in all immune compartments studied. Prolonged rapamycin treatment allowed for thymic generation of CD4(+)FoxP3(+) T cells, whereas treatment with cyclosporine led to a reduced generation of these cells. In conclusion, cyclosporine and rapamycin differentially affect homeostasis of CD4(+)FoxP3(+) T(REG) in vivo. As peripheral tolerance induction is a prerequisite for successful treatment outcome after allogeneic SCT, these findings are of potential clinical relevance
    corecore