130 research outputs found

    Distinct fibroblast lineages determine dermal architecture in skin development and repair

    Get PDF
    This work was funded by the Wellcome Trust (F.M.W., A.C.F.-S.), the Medical Research Council (MRC) (F.M.W., A.C.F.-S.) and the European Union FP7 programme: TUMIC (F.M.W.), HEALING (F.M.W.) and EpigeneSys (A.C.F.-S.). B.M.L. is the recipient of a FEBS long-term fellowship. K.K. is the recipient of a MRC PhD Studentship. The authors acknowledge financial support from the Department of Health via theNational Institute forHealth Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London (KCL) and King’s College Hospital NHS Foundation Trust. Input from M. Mastrogiannaki, A. Reimer and B. Trappmann is gratefully acknowledged

    Salivary Secretory Immunoglobulin a secretion increases after 4-weeks ingestion of chlorella-derived multicomponent supplement in humans: a randomized cross over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chlorella, a unicellular green alga that grows in fresh water, contains high levels of proteins, vitamins, minerals, and dietary fibers. Some studies have reported favorable immune function-related effects on biological secretions such as blood and breast milk in humans who have ingested a chlorella-derived multicomponent supplement. However, the effects of chlorella-derived supplement on mucosal immune functions remain unclear. The purpose of this study was to investigate whether chlorella ingestion increases the salivary secretory immunoglobulin A (SIgA) secretion in humans using a blind, randomized, crossover study design.</p> <p>Methods</p> <p>Fifteen men took 30 placebo and 30 chlorella tablets per day for 4 weeks separated by a 12-week washout period. Before and after each trial, saliva samples were collected from a sterile cotton ball that was chewed after overnight fasting. Salivary SIgA concentrations were measured using ELISA.</p> <p>Results</p> <p>Compliance rates for placebo and chlorella ingestions were 97.0 ± 1.0% and 95.3 ± 1.6%, respectively. No difference was observed in salivary SIgA concentrations before and after placebo ingestion (<it>P </it>= 0.38). However, salivary SIgA concentrations were significantly elevated after chlorella ingestion compared to baseline (<it>P </it>< 0.01). No trial × period interaction was identified for the saliva flow rates. Although the SIgA secretion rate was not affected by placebo ingestion (<it>P </it>= 0.36), it significantly increased after 4-week chlorella ingestion than before intake (<it>P </it>< 0.01).</p> <p>Conclusions</p> <p>These results suggest 4-week ingestion of a chlorella-derived multicomponent supplement increases salivary SIgA secretion and possibly improves mucosal immune function in humans.</p

    Feedback as intervention for team learning in virtual teams: the role of team cohesion and personality

    Get PDF
    Scholars and practitioners agree that virtual teams (VTs) have become commonplace in today's digital workplace. Relevant literature argues that learning constitutes a significant contributor to team member satisfaction and performance, and that, at least in face-to-face teams, team cohesion fosters team learning. Given the additional challenges VTs face, e.g. geographical dispersion, which are likely have a negative influence on cohesion, in this paper we shed light on the relationship between team cohesion and team learning. We adopted a quantitative approach and studied 54 VTs in our quest to understand the role of feedback in mediating this relationship and, more specifically, the role of personality traits in moderating the indirect effect of team feedback and guided reflection intervention on TL through team cohesion within the VT context. Our findings highlight the importance of considering aspects related to the team composition when devising intervention strategies for VTs, and provide empirical support for an interactionist model between personality and emergent states such as cohesion. Implications for theory and practice are also discussed

    Hair organ regeneration via the bioengineered hair follicular unit transplantation

    Get PDF
    Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia

    Delayed Cutaneous Wound Healing and Aberrant Expression of Hair Follicle Stem Cell Markers in Mice Selectively Lacking Ctip2 in Epidermis

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by PLoS and can be found at: http://www.plosone.org/home.action.Background: COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2(ep-/-) mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2(-/-)) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. \ud \ud Methodology/Principal Findings: Full thickness excisional wound healing experiments were performed on Ctip2(L2/L2) and Ctip2(ep-/-) animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2(ep-/-) mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. \ud \ud Conclusions/Significance: Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure

    Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair

    Get PDF
    The mouse hair coat comprises protective “primary” and thermo-regulatory “secondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda

    Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    Get PDF
    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy

    Raman Spectroscopy and Regenerative Medicine: A Review

    Get PDF
    The field of regenerative medicine spans a wide area of the biomedical landscape—from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool

    What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA) to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for <it>Plethodon </it>salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals).</p> <p>Results</p> <p>We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade), but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that <it>Plethodon </it>have an unusually large number of strongly supported conflicts between data types, which are generally resolved in favor of mtDNA in the combined-data tree (despite the large number of nuclear loci sampled).</p> <p>Conclusions</p> <p>Overall, our results from 14 vertebrate clades show that combined-data analyses are not necessarily dominated by the more variable mtDNA data sets. However, given cases like <it>Plethodon</it>, there is also the need for routine checking of incongruence between mtDNA and nucDNA data and its impacts on combined-data analyses.</p
    corecore