66 research outputs found
Manipulating infrared photons using plasmons in transparent graphene superlattices
Superlattices are artificial periodic nanostructures which can control the
flow of electrons. Their operation typically relies on the periodic modulation
of the electric potential in the direction of electron wave propagation. Here
we demonstrate transparent graphene superlattices which can manipulate infrared
photons utilizing the collective oscillations of carriers, i.e., plasmons of
the ensemble of multiple graphene layers. The superlattice is formed by
depositing alternating wafer-scale graphene sheets and thin insulating layers,
followed by patterning them all together into 3-dimensional
photonic-crystal-like structures. We demonstrate experimentally that the
collective oscillation of Dirac fermions in such graphene superlattices is
unambiguously nonclassical: compared to doping single layer graphene,
distributing carriers into multiple graphene layers strongly enhances the
plasmonic resonance frequency and magnitude, which is fundamentally different
from that in a conventional semiconductor superlattice. This property allows us
to construct widely tunable far-infrared notch filters with 8.2 dB rejection
ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a
superlattice with merely five graphene atomic layers. Moreover, an unpatterned
superlattice shields up to 97.5% of the electromagnetic radiations below 1.2
terahertz. This demonstration also opens an avenue for the realization of other
transparent mid- and far-infrared photonic devices such as detectors,
modulators, and 3-dimensional meta-material systems.Comment: under revie
Applying the selective Cu electroplating technique to light-emitting diodes
[[abstract]]We successfully fabricated a predefined patterned copper (Cu) substrate for thin GaN light-emitting diodes without barriers by the selective electroplating technique. The contours of Cu bumps fabricated using different electroplating modes and parameters were measured. We observed that the average thickness diminished with increasing current density. The current density conditions to obtain the best upright structure in the process were 40 and 80 mA/cm2.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Effects of Growth Conditions on Structural Properties of ZnO Nanostructures on Sapphire Substrate by Metal–Organic Chemical Vapor Deposition
Abstract ZnO was grown on sapphire substrate by metal–organic chemical vapor deposition using the diethylzinc (DEZn) and oxygen (O2) as source chemicals at 500 °C. Influences of the chamber pressure and O2/DEZn ratio on the ZnO structural properties were discussed. It was found that the chamber pressure has significant effects on the morphology of ZnO and could result in various structures of ZnO including pyramid-like, worm-like, and columnar grain. When the chamber pressure was kept at 10 Torr, the lowest full width at half-maximum of ZnO (002) of 175 arc second can be obtained. On the other hand, by lowering the DEZn flow rate, the crystal quality of ZnO can be improved. Under high DEZn flow rate, the ZnO nanowall-network structures were found to grow vertically on the sapphire substrate without using any metal catalysts. It suggests that higher DEZn flow rate promotes three-dimensional growth mode resulting in increased surface roughness. Therefore, some tip on the ZnO surface could act as nucleation site. In this work, the growth process of our ZnO nanowall networks is said to follow the self-catalyzed growth mechanism under high-DEZn flow rate.</p
P-side up AlGaInP-based light emitting diodeswith dot-patterned GaAs contact layers
High-brightness p-side up AlGaInP-based red light emitting diodes (LEDs) with dot-patterned GaAs contact layer and surface rough structure are presented in this article. Initial LED structure of p-GaP/AlGaInP/GaAs is epitaxially grown using metal organic chemical vapor deposition technique. Using novel twice transferring process, the p-GaP layer is remained at the top side as both the current spreading and-window layer. Dot patterned GaAs contact dots are formed between main structure and rear mirror to improve light reflection and current spreading. Moreover, the surface of p-GaP window is further textured by nano-sphere lithography technique for improving the light extraction. Significant improvement in output power is found for AlGaInP LEDs with GaAs contact dots and roughened p-GaP window as compared with those of LEDs with traditional n-side up and p-side up structures without roughened surfaces
P-side up AlGaInP-based light emitting diodeswith dot-patterned GaAs contact layers
High-brightness p-side up AlGaInP-based red light emitting diodes (LEDs) with dot-patterned GaAs contact layer and surface rough structure are presented in this article. Initial LED structure of p-GaP/AlGaInP/GaAs is epitaxially grown using metal organic chemical vapor deposition technique. Using novel twice transferring process, the p-GaP layer is remained at the top side as both the current spreading and-window layer. Dot patterned GaAs contact dots are formed between main structure and rear mirror to improve light reflection and current spreading. Moreover, the surface of p-GaP window is further textured by nano-sphere lithography technique for improving the light extraction. Significant improvement in output power is found for AlGaInP LEDs with GaAs contact dots and roughened p-GaP window as compared with those of LEDs with traditional n-side up and p-side up structures without roughened surfaces
- …