1,033 research outputs found

    A Provably-Secure Unidirectional Proxy Re-Encryption Scheme Without Pairing in the Random Oracle Model

    Get PDF
    Proxy re-encryption (PRE) enables delegation of decryption rights by entrusting a proxy server with special information, that allows it to transform a ciphertext under one public key into a ciphertext of the same message under a different public key. It is important to note that, the proxy which performs the re-encryption learns nothing about the message encrypted under either public keys. Due to its transformation property, proxy re-encryption schemes have practical applications in distributed storage, encrypted email forwarding, Digital Rights Management (DRM) and cloud storage. From its introduction, several proxy re-encryption schemes have been proposed in the literature, and a majority of them have been realized using bilinear pairing. In Africacrypt 2010, the first PKI-based collusion resistant CCA secure PRE scheme without pairing was proposed in the random oracle model. In this paper, we point out an important weakness in the scheme. We also present the first collusion-resistant pairing-free unidirectional proxy re-encryption scheme which meets CCA security under a variant of the computational Diffie-Hellman hardness assumption in the random oracle model

    Efficiency of Peptide Nucleic Acid-Directed PCR Clamping and Its Application in the Investigation of Natural Diets of the Japanese Eel Leptocephali

    Get PDF
    Polymerase chain reaction (PCR)-clamping using blocking primer and DNA-analogs, such as peptide nucleotide acid (PNA), may be used to selectively amplify target DNA for molecular diet analysis. We investigated PCR-clamping efficiency by studying PNA position and mismatch with complementary DNA by designing PNAs at five different positions on the nuclear rDNA internal transcribed spacer 1 of the Japanese eel Anguilla japonica in association with intra-specific nucleotide substitutions. All five PNAs were observed to efficiently inhibit amplification of a fully complementary DNA template. One mismatch between PNA and template DNA inhibited amplification of the template DNA, while two or more mismatches did not. DNA samples extracted from dorsal muscle and intestine of eight wild-caught leptochephalus larvae were subjected to this analysis, followed by cloning, nucleotide sequence analysis, and database homology search. Among 12 sequence types obtained from the intestine sample, six were identified as fungi. No sequence similarities were found in the database for the remaining six types, which were not related to one another. These results, in conjunction with our laboratory observations on larval feeding, suggest that eel leptocephali may not be dependent upon living plankton for their food source

    Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane but Na+ influx through the fusion pore

    Get PDF
    Release of charged neurotransmitter molecules through a narrow fusion pore requires charge compensation by other ions. It has been proposed that this may occur by ion flow from the cytosol through channels in the vesicle membrane, which would generate a net outward current. This hypothesis was tested in chromaffin cells using cell-attached patch amperometry that simultaneously measured catecholamine release from single vesicles and ionic current across the patch membrane. No detectable current was associated with catecholamine release indicating that <2% of cations, if any, enter the vesicle through its membrane. Instead,we show that flux of catecholamines through the fusion pore, measured as an amperometric foot signal, decreases when the extracellular cation concentration is reduced. The results reveal that the rate of transmitter release through the fusion pore is coupled to net Na+ influx through the fusion pore, as predicted by electrodiffusion theory applied to fusion-pore permeation,and suggest a prefusion rather than postfusion role for vesicular cation channels

    Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents

    Get PDF
    Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124
    corecore