54 research outputs found

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Aptamers for pharmaceuticals and their application in environmental analytics

    Get PDF
    Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications

    High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities

    No full text
    International audienceTranscription factors (TFs) control gene transcription, binding to specific DNA motifs located in cis-regulatory elements across the genome. The identification of TF-binding motifs is thus an important aspect to understand the role of TFs in gene regulation. SELEX, Systematic Evolution of Ligands by EXponential enrichment, is an efficient in vitro method, which can be used to determine the DNA-binding specificity of TFs. Thanks to the development of high-throughput (HT) DNA cloning system and protein production technology, the classical SELEX assay has be extended to high-throughput scale (HT-SELEX).We report here the detailed protocol for the cloning, production, and purification of 420 Ciona robusta DNA BD. 263 Ciona robusta TF DNA-binding domain proteins were purified in milligram quantities and analyzed by HT-SELEX. The identification of 139 recognition sequences generates an atlas of protein-DNA-binding specificities that is crucial for the understanding of the gene regulatory network (GRN) of Ciona robusta. Overall, our analysis suggests that the Ciona robusta repertoire of sequence-specific transcription factors comprises less than 500 genes. The protocols for high-throughput protein production and HT-SELEX described in this article for the study of Ciona robusta TF DNA-binding specificity are generic and have been successfully applied to a wide range of TFs from other species, including human, mouse, and Drosophila

    DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours

    No full text
    Aptamers are functional molecules able to bind tightly and selectively to disease markers, offering great potential for applications in disease diagnosis and therapy. MUC1 is a well-known tumour marker present in epithelial malignancies and is used in immunotherapeutic and diagnostic approaches. We report the selection of DNA aptamers that bind with high affinity and selectivity an MUC1 recombinant protein containing five repeats of the variable tandem repeat region. Aptamers were selected using the SELEX methodology from an initial library containing a 25-base-long variable region for their ability to bind to the unglycosylated form of the MUC1 protein. After ten rounds of in vitro selection and amplification, more than 90% of the pool of sequences consisted of target-binding molecules, which were cloned, sequenced and found to share no sequence consensus. The binding properties of these aptamers were quantified using ELISA and surface plasmon resonance. The lead aptamer sequence was subsequently used in the design of an aptamer–antibody hybrid sandwich ELISA for the identification and quantification of MUC1 in buffered solutions. Following optimisation of the operating conditions, the resulting enzyme immunoassay displayed an EC50 value of 25 μg/ml, a detection limit of 1 μg/ml and a linear range between 8 and 100 μg/ml for the MUC1 five tandem repeat analyte. In addition, recovery studies performed in buffer conditions resulted in averaged recoveries between 98.2 and 101.7% for all spiked samples, demonstrating the usability of the aptamer as a receptor in microtitre-based assays. Our results aim towards the formation of new diagnostic assays against this tumour marker for the early diagnosis of primary or metastatic disease in breast, bladder and other epithelial tumours
    • …
    corecore