4 research outputs found

    Sputum Moraxella catarrhalis strains exhibit diversity within and between COPD subjects.

    No full text
    Purpose: Moraxella catarrhalis is implicated in the pathogenesis of some COPD exacerbations. We sought to investigate whether the M. catarrhalis strain is variable between COPD subjects; that an exacerbation is associated with acquisition of a new strain and that certain strains are more commonly associated with exacerbations. Patients and methods: Sputum samples were collected at stable and exacerbation visits from COPD subjects from a single center as part of the COPDMAP consortium. Samples identified as M. catarrhalis positive by qPCR were recultured in liquid cultures grown to extract genomic DNA; underwent Illumina MiSeq and bacterial genome sequences were de novo assembled and Multi Locus Sequence Type (MLST) was determined. Results: Thirty-five samples were obtained from 18 subjects. These included 13 stable and 22 exacerbation samples. The diversity between samples was very large with 25 different M. catarrhalis MLSTs being identified out of the 35 samples of which 12 MSLTs have not been described previously. Change and persistence of M. catarrhalis strain were observed between stable visits, from stable to exacerbation and vice-a-versa, and between exacerbation visits. Conclusion: Sputum M. catarrhalis strains exhibit marked diversity within and between COPD subjects. Acquisition of a new strain is common between stable and exacerbation events such that no strain is specifically associated with an exacerbation

    An ex vivo porcine spleen perfusion as a model of bacterial sepsis.

    Get PDF
    An ex vivo, porcine spleen perfusion model was established to study the early events occurring in the spleen prior to the onset of bacterial sepsis, using organs retrieved from animals slaughtered for food production. Porcine spleens were harvested from adult pigs and connected to a normothermic extracorporeal perfusion circuit. A constant perfusion of heparinized blood was performed for 6 hours. After injection of Streptococcus pneumoniae to the circuit serial samples of both blood and spleen biopsies were collected and analysed. Functionality of the perfused organs was assessed by monitoring the blood-gas parameters, flow rate and filtering capability of the organ. Interestingly, we observed full clearance of bacteria from the blood and an increase in bacterial counts in the spleen. Classical histology and immunohistochemistry on biopsies also confirmed no major damages in the organ architecture and changes in the immune cell distribution, other than the presence of clusters of pneumococci. A time-course study confirmed that each focus of infection derived from the replication of single pneumococcal cells within splenic macrophages. The model proposed - in line with the 3Rs principles - has utility in the replacement of experimental animals in infection research. Murine models are prevalently used to study pneumococcal infections, but are often not predictive for humans due to substantial differences in the immune systems of the two species. This model is designed to overcome these limitations, since porcine immunology and splenic architecture in particular, closely resemble those of humans

    Recombination of the phase variable spnIII locus is independent of all known pneumococcal site-specific recombinases.

    No full text
    Streptococcus pneumoniae is one of the world's leading bacterial pathogens, causing pneumonia, septicaemia and meningitis. In recent years it has been shown that genetic rearrangements in a type I restriction-modification system (SpnIII) can impact colony morphology and gene expression. By generating a large panel of mutant strains, we have confirmed a previously reported result that the CreX (also known as IvrR and PsrA) recombinase found within the locus is not essential for hsdS inversions. In addition, mutants of homologous recombination pathways also undergo hsdS inversions. In this work we have shown that these genetic rearrangements, which result in different patterns of genome methylation, occur across a wide variety of serotypes and sequence types including two strains (a 19F and a 6B strain) naturally lacking CreX. Our gene expression analysis, by RNAseq, confirm that the level of creX expression is impacted by these genomic rearrangements. In addition, we have shown that the frequency of hsdS recombination is temperature dependent. Most importantly we have demonstrated that the other known pneumococcal site-specific recombinases XerD, XerS and SPD_0921 are not involved in spnIII recombination, suggesting a currently unknown mechanism is responsible for the recombination of these phase variable type I systems.ImportanceStreptococcus pneumoniae is a leading cause of pneumonia, septicaemia and meningitis. The discovery that genetic rearrangements in a type I restriction modification locus can impact gene regulation and colony morphology have led to a new understanding of how this pathogen switches from harmless coloniser to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction modification enzyme, occur across many different pneumococcal serotypes and sequence types, and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site specific recombination

    Methylation warfare: interaction of pneumococcal bacteriophages with their host.

    No full text
    Virus-host interactions are regulated by complex co-evolutionary dynamics. In S. pneumoniae phase-variable Type I restriction modification (R-M) systems are part of the core genome. We hypothesised that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we showed that the variants of both the SpnIII and SpnIV R-M system were able to restrict invading bacteriophage proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable Type I R-M systems have in the multi-functional defence against bacteriophage infection in the respiratory pathogen S. pneumoniae.Importance With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focussed on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts has attracted far less attention in comparison. This work describes the molecular characterisation of the infectious cycle of a bacteriophage of the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase variable host defence mechanisms and the virus. This is the first report showing how a phase variable type I restriction modification system is involved in bacteriophage restriction, whilst also providing an additional level of infection control through abortive infection
    corecore