501 research outputs found

    Vanishing spin alignment : experimental indication of triaxial 28Si+28Si\bf ^{28}Si + {^{28}Si} nuclear molecule

    Full text link
    Fragment-fragment-Îł\gamma coincidences have been measured for 28Si+28Si\rm ^{28}Si + {^{28}Si} at an energy corresponding to the population of a conjectured resonance in 56^{56}Ni. Fragment angular distributions as well as Îł\gamma-ray angular correlations indicate that the spin orientations of the outgoing fragments are perpendicular to the orbital angular momentum. This differs from the 24Mg+24Mg\rm ^{24}Mg+{^{24}Mg} and the 12C+12C\rm ^{12}C+{^{12}C} resonances, and suggests two oblate 28Si\rm ^{28}Si nuclei interacting in an equator-to-equator molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for publication in Physical Review C (Rapid Communication

    Cluster states in nuclei as representations of a U(n+1) group

    Full text link
    We propose a description of cluster states in nuclei in terms of representations of unitary algebras U(n+1), where n is the number of space degrees of freedom. Within this framework, a variety of situations including both vibrational and rotational spectra, soft and rigid configurations, identical and non-identical constituents can be described. As an example, we show how the method can be used to study alpha-clustering configurations in 12C with point group symmetry D(3h).Comment: 5 pages, 2 figures, Phys. Rev. C, in pres

    Refractive elastic scattering of carbon and oxygen nuclei: The mean field analysis and Airy structures

    Full text link
    The experimental data on the 16^{16}O+12+^{12}C and 18^{18}O+12+^{12}C elastic scatterings and their optical model analysis are presented. Detailed and complete elastic angular distributions have been measured at the Strasbourg Vivitron accelerator at several energies covering the energy range between 5 and 10 MeV per nucleon. The elastic scattering angular distributions show the usual diffraction pattern and also, at larger angles, refractive effects in the form of nuclear rainbow and associated Airy structures. The optical model analysis unambiguously shows the evolution of the refractive scattering pattern. The observed structure, namely the Airy minima, can be consistently described by a nucleus-nucleus potential with a deep real part and a weakly absorptive imaginary part. The difference in absorption in the two systems is explained by an increased imaginary (mostly surface) part of the potential in the 18^{18}O+12+^{12}C system. The relation between the obtained potentials and those reported for the symmetrical 16^{16}O+16+^{16}O and 12^{12}C+12+^{12}C systems is drawn.Comment: 10 pages, 9 figures, Phys. rev. C in pres

    Silicon Pad Detectors for the PHOBOS Experiment at RHIC

    Full text link
    The PHOBOS experiment is well positioned to obtain crucial information about relativistic heavy ion collisions at RHIC, combining a multiplicity counter with a multi-particle spectrometer. The multiplicity arrays will measure the charged particle multiplicity over the full solid angle. The spectrometer will be able to identify particles at mid-rapidity. The experiment is constructed almost exclusively of silicon pad detectors. Detectors of nine different types are configured in the multiplicity and vertex detector (22,000 channels) and two multi-particle spectrometers (120,000 channels). The overall layout of the experiment, testing of the silicon sensors and the performance of the detectors during the engineering run at RHIC in 1999 are discussed.Comment: 7 pages, 7 figures, 1 table, Late

    Deformation effects in 56^{56}Ni nuclei produced in 28^{28}Si+28^{28}Si at 112 MeV

    Full text link
    Velocity and energy spectra of the light charged particles (protons and α\alpha-particles) emitted in the 28^{28}Si(Elab_{lab} = 112 MeV) + 28^{28}Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle multidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of α\alpha-particles emitted from the 28^{28}Si + 28^{28}Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous α\alpha-particle data from the 30^{30}Si + 30^{30}Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the ACN_{CN} ~ 60 mass region.Comment: 25 pages, 6 figure

    Ru48 single-nucleon transfer at the barrier

    Get PDF
    Single-nucleon transfer cross sections have been measured for the 48Ti+104Ru reaction over a large angular range at an energy near the Coulomb barrier. Evidence has been found previously in -ray studies for superdeformed shapes in the compound system (152Dy) reached by this reaction. Reaction channels which couple to these shapes may experience interaction time delays, which would be revealed experimentally by broadened angular distributions. Although an enhancement is found in the forward angle Ti49 yields, this enhancement is small and may reflect uncertainties in the analysis

    Heavy-ion resonance and statistical fission competition in the Mg24+24Mg system at Ec.m.=44.4 MeV

    Get PDF
    The fully energy-damped cross sections of the Mg24+24Mg reaction at Ec.m.=44.4 MeV have been measured for all of the major fission channels. High-resolution Q-value spectra have been obtained for the large-angle yields in the Mg24+24Mg and Ne20+28Si channels. Calculations based on the transition-state model are found to reproduce the fully damped cross sections in all of the observed mass channels. The pronounced structure that is observed in the excitation-energy spectra for the more symmetric mass channels, even for the strongly damped yields, is shown to be qualitatively reproduced by assuming a spin-weighted population of the fragment states. There is no evidence, however, that the structure of the nascent fission fragments at scission may influence the population of states in the fragments. These results, taken together with earlier measurements of the resonance behavior of this system, suggest the coexistence of fission from the normal, compact compound nucleus with that from the deformed configurations believed to be responsible for the resonance behavior

    Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC

    Full text link
    Transverse momentum spectra of charged hadrons with pT<{p_{T} <} 6 GeV/c have been measured near mid-rapidity (0.2 <η<< \eta < 1.4) by the PHOBOS experiment at RHIC in Au + Au and d + Au collisions at sNN=200GeV{\sqrt{s_{_{NN}}} = \rm {200 GeV}}. The spectra for different collision centralities are compared to p+pˉ{p + \bar{p}} collisions at the same energy. The resulting nuclear modification factor for central Au + Au collisions shows evidence of strong suppression of charged hadrons in the high-pTp_{T} region (>2{>2} GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pTp_{T} yields. These measurements suggest a large energy loss of the high-pTp_{T} particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High Energy Physics EPS (July 17th-23rd 2003) in Aachen, German
    • …
    corecore