5,544 research outputs found

    Quasiparticle lifetime behaviour in a simplified self-consistent T-matrix treatment of the attractive Hubbard model in 2D

    Full text link
    The attractive Hubbard model on a 2-D square lattice is studied at low electronic densities using the ladder approximation for the pair susceptibility. This model includes (i) the short coherence lengths known to exist experimentally in the cuprate superconductors, and (ii) two-particle bound states that correspond to electron pairs. We study the quasiparticle lifetimes in both non self-consistent and self-consistent theories, the latter including interactions between the pairs. We find that if we include the interactions between pairs the quasiparticle lifetimes vary approximately linearly with the inverse temperature, consistent with experiment.Comment: 2 pages, including 2 figures, to appear in the proceedings of the ICNS '9

    Simulation of Photonic Band Gaps in Metal Rod Lattices for Microwave Applications

    Get PDF
    We have derived the global band gaps for general two-dimensional (2D) photonic band gap (PBG) structures formed by square or triangular arrays of metal posts. Such PBG structures have many promising applications in active and passive devices at microwave, millimeter wave and higher frequencies. A coordinate-space, finite-difference code, called the photonic band gap structure simulator (PBGSS), was developed to calculate complete dispersion curves for lattices for a series of values of the ratio of the post radius (a) to the post spacing (b). The fundamental and higher frequency global photonic band gaps were determined numerically. These universal curves should prove useful in PBG cavity design. In addition, for very long wavelengths, where the numerical methods of the PBGSS code are difficult, dispersion curves were derived for the TM mode by an approximate, quasi-static approach. Results of this approach agree well with the PBGSS code for a/b < 0.1. The present results are compared with experimental data for TE and TM mode PBG resonators built at MIT and the agreement is found to be very good

    JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response

    Get PDF
    Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)–marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies

    POSTURAL EFFECTS ON COMPARTMENTAL VOLUME CHANGES OF BREATHING BY OPTOELECTRONIC PLETHYSMOGRAPHY IN HEALTHY SUBJECTS

    Get PDF
    Breathing pattern was an important factor to affect the performance of sports for athletes. Optoelectronic plethysmography (OEP) was a new method to evaluate breathing pattern by measuring compartmental volume (upper thorax (UT), lower thorax (LT), and abdomen (AB)) freely without limitation. Previous study already investigated the swimmers had better breathing pattern measured by OEP (Karine et al., 2008) in sitting posture. Swimming, such as backstroke, is perfromed in supine posture, but previous study did not consider the postural effect on breathing pattern. This study explored the compartmental volume changes of healthy subjects in different postures

    Offline to Online Conversion

    Full text link
    We consider the problem of converting offline estimators into an online predictor or estimator with small extra regret. Formally this is the problem of merging a collection of probability measures over strings of length 1,2,3,... into a single probability measure over infinite sequences. We describe various approaches and their pros and cons on various examples. As a side-result we give an elementary non-heuristic purely combinatoric derivation of Turing's famous estimator. Our main technical contribution is to determine the computational complexity of online estimators with good guarantees in general.Comment: 20 LaTeX page

    A high-voltage modulator for high-power RF source research

    Get PDF

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately

    Numerical studies of the spectral evolution of a narrow-bandwidth FEL oscillator

    Get PDF

    Investigation of ultra-high performance concrete under static and blast loads

    Get PDF
    Conventional concrete works as an important construction material. However, conventional concrete is known to be brittle and prone to tensile failure and cracks. To overcome such defects and improve the dynamic performance of concrete against extreme loading conditions, concrete with different additions and formulae have been developed. In a recent study, to develop ultra-high performance concrete (UHPC) material with better strength and crack control ability, super fine aggregates with high pozzolanic effect were mixed into the steel fibre reinforced concrete instead of the traditional graded coarse aggregates. Furthermore, to achieve high early age strength, nanoscale additives which can accelerate the hydration process of the ordinary Portland cement were also introduced into the concrete composite. A series of uniaxial compression and four-point bending tests had been performed in the laboratory to get the material properties of this innovative concrete material. Great improvement of the concrete uniaxial compressive strength and flexural tensile strength was observed. Field blast tests were carried out on columns made of this UHPC material. Superior blast resistance performance was observed. In the current study, based on the available test data, numerical models are developed and numerical simulations are carried out. The simulation results are found to comply well with the experimental results
    • …
    corecore