2 research outputs found

    XMM Newton Observations of Red AGNs

    Full text link
    XMM-Newton spectra of five red 2MASS active galactic nuclei (AGNs), selected from a sample observed by Chandra to be relatively X-ray bright and to cover a range of hardness ratios, confirm the presence of substantial absorbing material in three sources with optical classifications ranging from type 1 to type 2. A flat (hard) power-law continuum is observed in the other two. The combination of X-ray absorption and broad optical emission lines suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission-line region (BELR). A soft excess is detected in all three type 1 sources. We speculate that this may arise in an extended region of ionized gas, perhaps linked to the polarized (scattered) optical light present in these sources. The spectral complexity revealed by XMM-Newton emphasizes the limitations of the low-S/N Chandra data. The new results strengthen our earlier conclusions that the observed X-ray continua of red AGNs are unusually hard at energies gsim2 keV. Their observed spectra are consistent with contributing significantly to the missing hard or absorbed population of the cosmic X-ray background (CXRB), although their intrinsic power-law slopes are typical of broad-line (type 1) AGNs (Γ ~ 1.7-1.9). This suggests that the missing X-ray-absorbed CXRB population may include type 1 AGNs or QSOs in addition to the type 2 AGNs generally assumed

    THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Full text link
    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities Lbol > 1014 LO;, including five with infrared luminosities LIR ≡ L(rest 8-1000 μm) > 1014 LO. These "extremely luminous infrared galaxies," or ELIRGs, were discovered using the "W1W2-dropout" selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4-10 μm, suggesting that hot dust with Td ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same Lbol level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%-80% higher than that of the unobscured quasars. The existence of AGNs with Lbol > 1014 L at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼103 MO, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion
    corecore