131 research outputs found

    Status of the PICASSO Project

    Full text link
    The Picasso project is a dark matter search experiment based on the superheated droplet technique. Preliminary runs performed at the Picasso Lab in Montreal have showed the suitability of this detection technique to the search for weakly interacting cold dark matter particles. In July 2002, a new phase of the project started. A batch of six 1-liter detectors with an active mass of approximately 40g was installed in a gallery of the SNO observatory in Sudbury, Ontario, Canada at a depth of 6,800 feet (2,070m). We give a status report on the new experimental setup, data analysis, and preliminary limits on spin-dependent neutralino interaction cross section.Comment: 3 pages, 2 figures. To appear in the Proceedings of the TAUP 2003 conference, 5-9 September, 2003, University of Washington, Seattle, US

    Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO

    Get PDF
    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19^{19}F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19^{19}F of 65 g and 69 g respectively and a total exposure of 13.75 ±\pm 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2^2 new limits have been obtained on the spin-dependent cross section on 19^{19}F of σF\sigma_F = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp\sigma_p = 0.16 pb and σn\sigma_n = 2.60 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages, 7 figure

    'Searching for a needle in a haystack;' A Ba-tagging approach for an upgraded nEXO experiment

    Full text link
    nEXO is a proposed experiment that will search for neutrinoless double-beta decay (0νββ\nu\beta\beta) in 5-tonnes of liquid xenon (LXe), isotopically enriched in 136^{136}Xe. A technique called Ba-tagging is being developed as a potential future upgrade for nEXO to detect the 136^{136}Xe double-beta decay daughter isotope, 136^{136}Ba. An efficient Ba-tagging technique has the potential to boost nEXO's 0νββ\nu\beta\beta sensitivity by essentially suppressing non-double-beta decay background events. A conceptual approach for the extraction from the detector volume, trapping, and identification of a single Ba ion from 5 tonnes of LXe is presented, along with initial results from the commissioning of one of its subsystems, a quadrupole mass filter.Comment: 4 pages, 2 figure

    A simple radionuclide-driven single-ion source

    Get PDF
    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon {\alpha}-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. The simultaneous detection of an {\alpha} particle in the substrate detector allows for tagging of the nuclear decay and of the Ba+ emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source
    • …
    corecore