1,302 research outputs found
Radiative corrections for (e,e′p) reactions at GeV energies
A general framework for applying radiative corrections to (e,e′p) coincidence reactions at GeV energies is presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron, and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying radiative corrections to (e,e′p) data is extensively discussed. The general framework is tested against experimental data of the 1H(e,e′p) reaction at momentum transfer values larger than 1.0 (GeV/c)^2, where radiative processes become a dominant source of uncertainty. The formulas presented here can easily be modified for any other electron-induced coincidence reaction
The He(e, ed)p Reaction in q-constant Kinematics
The cross section for the He(e, ed)p reaction has been measured as a
function of the missing momentum in q -constant kinematics at
beam energies of 370 and 576 MeV for values of the three-momentum transfer
of 412, 504 and 604 \mevc. The L(+TT), T and LT structure functions have been
separated for = 412 and 504 \mevc. The data are compared to three-body
Faddeev calculations, including meson-exchange currents (MEC), and to
calculations based on a covariant diagrammatic expansion. The influence of
final-state interactions and meson-exchange currents is discussed. The
-dependence of the data is reasonably well described by all calculations.
However, the most advanced Faddeev calculations, which employ the AV18
nucleon-nucleon interaction and include MEC, overestimate the measured cross
sections, especially the longitudinal part, and at the larger values of .
The diagrammatic approach gives a fair description of the cross section, but
under(over)estimates the longitudinal (transverse) structure function.Comment: 17 pages, 7 figure
Q^2 Evolution of Generalized Baldin Sum Rule for the Proton
The generalized Baldin sum rule for virtual photon scattering, the
unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral, provides
an important way to investigate the transition between perturbative QCD and
hadronic descriptions of nucleon structure. This sum rule requires integration
of the nucleon structure function F_1, which until recently had not been
measured at low Q^2 and large x, i.e. in the nucleon resonance region. This
work uses new data from inclusive electron-proton scattering in the resonance
region obtained at Jefferson Lab, in combination with SLAC deep inelastic
scattering data, to present first precision measurements of the generalized
Baldin integral for the proton in the Q^2 range of 0.3 to 4.0 GeV^2.Comment: 4 pages, 3 figures, one table; text added, one figure replace
A high-precision polarimeter
We have built a polarimeter in order to measure the electron beam
polarization in hall C at JLAB. Using a superconducting solenoid to drive the
pure-iron target foil into saturation, and a symmetrical setup to detect the
Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new
standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.
Comment on "Nucleon elastic form factors and local duality"
We comment on the papers "Nucleon elastic form factors and local duality"
[Phys. Rev. {\bf D62}, 073008 (2000)] and "Experimental verification of
quark-hadron duality" [Phys. Rev. Lett. {\bf 85}, 1186 (2000)]. Our main
comment is that the reconstruction of the proton magnetic form factor, claimed
to be obtained from the inelastic scaling curve thanks to parton-hadron local
duality, is affected by an artifact.Comment: to appear in Phys. Rev.
Perturbative QCD Analysis of Local Duality in a fixed W^2 Framework
We study the global Q^2 dependence of large x, F_2 nucleon structure function
data, with the aim of providing a perturbative-QCD based, quantitative analysis
of parton-hadron duality. As opposed to previous analyses at fixed x, we use a
framework in fixed W^2. We uncover a breakdown of the twist-4 approximation
with a renormalon type improvement at O(1/Q^4) which, by affecting the initial
evolution of parton distributions, will have consequences for pQCD analyses
also at large x and very large Q^2.Comment: RevTex4, 8 pages, 3 figure
Quark-hadron duality in a relativistic, confining model
Quark-hadron duality is an interesting and potentially very useful
phenomenon, as it relates the properly averaged hadronic data to a perturbative
QCD result in some kinematic regions. While duality is well established
experimentally, our current theoretical understanding is still incomplete. We
employ a simple model to qualitatively reproduce all the features of
Bloom-Gilman duality as seen in electron scattering. In particular, we address
the role of relativity, give an explicit analytic proof of the equality of the
hadronic and partonic scaling curves, and show how the transition from coherent
to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan
Isgur. (34 pages, 13 figures
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities
These reports present the results of the 2013 Community Summer Study of the
APS Division of Particles and Fields ("Snowmass 2013") on the future program of
particle physics in the U.S. Chapter 6, on Accelerator Capabilities, discusses
the future progress of accelerator technology, including issues for high-energy
hadron and lepton colliders, high-intensity beams, electron-ion colliders, and
necessary R&D for future accelerator technologies.Comment: 26 page
Measurement of the EMC Effect in the Deuteron
We determined the structure function ratio RdEMC=Fd2/(Fn2+Fp2) from recently published Fn2/Fd2 data taken by the BONuS experiment using CLAS at Jefferson Lab. This ratio deviates from unity, with a slope dRdEMC/dx=−0.10 ± 0.05 in the range of Bjorken x from 0.35 to 0.7, for invariant mass W\u3e1.4 GeV and Q2\u3e1 GeV2 . The observed EMC effect for these kinematics is consistent with conventional nuclear physics models that include off-shell corrections, as well as with empirical analyses that find the EMC effect proportional to the probability of short-range nucleon-nucleon correlations
- …