90 research outputs found
Periodic ground state for the charged massive Schwinger model
It is shown that the charged massive Schwinger model supports a periodic
vacuum structure for arbitrary charge density, similar to the common
crystalline layout known in solid state physics. The dynamical origin of the
inhomogeneity is identified in the framework of the bozonized model and in
terms of the original fermionic variables.Comment: 19 pages, 10 figures, revised version, accepted in Phys. Rev.
Ellipsoidal analysis of coordination polyhedra
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d(5) effect' for Fe(3+) ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules
Organic Superconductors: when correlations and magnetism walk in
This survey provides a brief account for the start of organic
superconductivity motivated by the quest for high Tc superconductors and its
development since the eighties'. Besides superconductivity found in 1D organics
in 1980, progresses in this field of research have contributed to better
understand the physics of low dimensional conductors highlighted by the wealth
of new remarkable properties. Correlations conspire to govern the low
temperature properties of the metallic phase. The contribution of
antiferromagnetic fluctuations to the interchain Cooper pairing proposed by the
theory is borne out by experimental investigations and supports
supercondutivity emerging from a non Fermi liquid background. Quasi one
dimensional organic superconductors can therefore be considered as simple
prototype systems for the more complex high Tc materials.Comment: 41 pages, 21 figures to be published in Journal of Superconductivity
and Novel Magnetis
Structural studies of phase transitions in one-dimensional conductors and superconductors
Neutron and X-ray diffuse scattering study of tetrathiofulvalene tetracyanoouinodimethane (TTF-TCNQ)
- …
