41 research outputs found

    Dynamical vanishing of the order parameter in a fermionic condensate

    Full text link
    We analyze the dynamics of a condensate of ultra-cold atomic fermions following an abrupt change of the pairing strength. At long times, the system goes to a non-stationary steady state, which we determine exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state of the system combines properties of normal and superfluid states - the gap and the condensate fraction vanish, while the superfluid density is nonzero.Comment: 4 pages, 3 figures, journal versio

    Atom-molecule coexistence and collective dynamics near a Feshbach resonance of cold fermions

    Full text link
    Degenerate Fermi gas interacting with molecules near Feshbach resonance is unstable with respect to formation of a mixed state in which atoms and molecules coexist as a coherent superposition. Theory of this state is developed using a mapping to the Dicke model, treating molecular field in the single mode approximation. The results are accurate in the strong coupling regime relevant for current experimental efforts. The exact solution of the Dicke model is exploited to study stability, phase diagram, and nonadiabatic dynamics of molecular field in the mixed state.Comment: 5 pages, 2 figure

    Coexistence of superfluid and Mott phases of lattice bosons

    Get PDF
    Recent experiments on strongly-interacting bosons in optical lattices have revealed the co-existence of spatially-separated Mott-insulating and number-fluctuating phases. The description of this inhomogeneous situation is the topic of this Letter. We establish that the number-fluctuating phase forms a superfluid trapped between the Mott-insulating regions and derive the associated collective mode structure. We discuss the interlayer's crossover between two- and three-dimensional behavior as a function of the lattice parameters and estimate the critical temperatures for the transition of the superfluid phase to a normal phase

    Resonant Bend Loss in Leakage Channel Fibers

    Full text link
    Leakage channel fibers, designed to suppress higher-order modes, demonstrate resonant power loss at certain critical radii of curvature. Outside the resonance, the power recovers to the levels offset by the usual mechanism of bend-induced loss. Using C2^2-imaging, we experimentally characterize this anomaly and identify the corresponding physical mechanism as the radiative decay of the fundamental mode mediated by the resonant coupling to a cladding mode.Comment: 3 pages, 4 figures, submitted to Optics Letter

    Time evolution of Matrix Product States

    Full text link
    In this work we develop several new simulation algorithms for 1D many-body quantum mechanical systems combining the Matrix Product State variational ansatz with Taylor, Pade and Arnoldi approximations to the evolution operator. By comparing all methods with previous techniques based on Trotter decompositions we demonstrate that the Arnoldi method is the best one, reaching extremely good accuracy with moderate resources. Finally we apply this algorithm to studying the formation of molecules in an optical lattices when crossing a Feschbach resonance with a cloud of two-species hard-core bosons.Comment: More extensive comparison with all nearest-neighbor spin s=1/2 models. The results in this manuscript have been superseded by a more complete work in cond-mat/061021
    corecore