5,564 research outputs found

    Dark Matter and IMF normalization in Virgo dwarf early-type galaxies

    Get PDF
    In this work we analyze the dark matter (DM) fraction, fDMf_{DM}, and mass-to-light ratio mismatch parameter, δIMF\delta_{IMF} (computed with respect to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in the Virgo cluster. Both fDMf_{DM} and δIMF\delta_{IMF} are estimated within the central (one effective radius) galaxy regions, with a Jeans dynamical analysis that relies on galaxy velocity dispersions, structural parameters, and stellar M/L ratios from the SMAKCED survey. In this first attempt to constrain, simultaneously, the IMF normalization and the DM content, we explore the impact of different assumptions on the DM model profile. On average, for a NFW profile, the δIMF\delta_{IMF} is consistent with a Chabrier-like normalization (δIMF∼1\delta_{IMF} \sim 1), with fDM∼0.35f_{DM} \sim 0.35. One of the main results of the present work is that for at least a few systems the δIMF\delta_{IMF} is heavier than the MW-like value (i.e. either top- or bottom-heavy). When introducing tangential anisotropy, larger δIMF\delta_{IMF} and smaller fDMf_{DM} are derived. Adopting a steeper concentration-mass relation than that from simulations, we find lower δIMF\delta_{IMF} (<1< 1) and larger fDMf_{DM}. A constant M/L profile with null fDMf_{DM} gives the heaviest δIMF\delta_{IMF} (∼2\sim 2). In the MONDian framework, we find consistent results to those for our reference NFW model. If confirmed, the large scatter of δIMF\delta_{IMF} for dEs would provide (further) evidence for a non-universal IMF in early-type systems. On average, our reference fDMf_{DM} estimates are consistent with those found for low-σe\sigma_{e} (∼100 kms−1\rm \sim 100 \, \rm km s^{-1}) early-type galaxies (ETGs). Furthermore, we find fDMf_{DM} consistent with values from the SMAKCED survey, and find a double-value behavior of fDMf_{DM} with stellar mass, which mirrors the trend of dynamical M/L and global star formation efficiency with mass.Comment: 11 pages, 3 figures, 1 table, published on MNRAS. Figure 1 has been updated with respect to version 1, including the range of values found if the S\'ersic index, n, is varied from 0.5 to 2 (dark-green curves

    The ALICE Inner Tracking System Off-line Software

    Get PDF
    Presentation for CHEP2000An overall view of the ALICE Inner Tracking System Off-line Software is presented. Besides the general scheme, some preliminary results concerning geometry, material budget, track reconstruction and particle identification are also shown

    SPIDER - IV. Optical and NIR color gradients in Early-type galaxies: New Insights into Correlations with Galaxy Properties

    Full text link
    We present an analysis of stellar population gradients in 4,546 Early-Type Galaxies with photometry in grizYHJKgrizYHJK along with optical spectroscopy. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, ∇⋆\nabla_{\star}, which incorporates all of the available color indices, we investigate how ∇⋆\nabla_{\star} varies with galaxy mass proxies, i.e. velocity dispersion, stellar (M_star) and dynamical (M_dyn) masses, as well as age, metallicity, and alpha/Fe. ETGs with M_dyn larger than 8.5 x 10^10, M_odot have increasing age gradients and decreasing metallicity gradients wrt mass, metallicity, and enhancement. We find that velocity dispersion and alpha/Fe are the main drivers of these correlations. ETGs with 2.5 x 10^10 M_odot =< M_dyn =< 8.5 x 10^10 M_odot, show no correlation of age, metallicity, and color gradients wrt mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and alpha-enhancement is significant at \sim 4sigma, and results from the fact that metallicity gradient decreases with alpha/Fe. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than \sim 5 Gyr, mostly at low-mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.Comment: Accepted for Publication in the Astronomical Journa

    Characterizing the nature of Fossil Groups with XMM

    Full text link
    We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group (FG) candidates identified in our previous work using SDSS and RASS data. Four candidates (out of six) exhibit extended X-ray emission, confirming them as true FGs. For the other two groups, the RASS emission has its origin as either an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources. Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band magnitude gap between the seed elliptical and the second-rank galaxy. However, the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total flux, which is greatly underestimated when using SDSS (relative to Sersic) magnitudes. This implies that many FGs may be actually missed when using SDSS data, a fact that should be carefully taken into account when comparing the observed number densities of FGs to the expectations from cosmological simulations. The similarity in the properties of seed--FG and non-fossil ellipticals, found in our previous study, extends to the sample of X-ray confirmed FGs, indicating that bright ellipticals in FGs do not represent a distinct population of galaxies. For one system, we also find that the velocity distribution of faint galaxies is bimodal, possibly showing that the system formed through the merging of two groups. This undermines the idea that all selected FGs form a population of true fossils.Comment: 9 pages, 3 figures. Submitted 01/12/2011 to MNRAS, referee report received 21/02/2012, accepted 22/02/201

    I paesaggi agrari tradizionali dell’albero: il significato moderno di forme d’uso del suolo del passato

    Get PDF
    Italy represents one of the most suitable environment for fruit trees and vines and since the origin of their domestication and introduction in extremely varying environments, depending on the species adaptability and local culture, a complex mosaic of landscapes has been originated by Nature, farmers or gardeners. In the study of the landscape it must be considered that the relationship between fruit trees or vines and landscapes represents a precious aspect of the Italian culture and has been studied by History, represented in Art and Literature, analyzed by science like Architecture and Agronomy, but at first has been created by Agriculture. Owing to the evolution of the relationship land and farmers, the development of agricultural practices, the change of marked requirements and objectives, different agricultural landscapes have been created, each having an unique meaning and functions. Nonetheless, the physiognomy of tree cropping systems has changed rapidly starting from half of the past century because of the introduction of new genetic resources, the change in the meaning of the product’s quality, the industrialization of the agronomic technique. These recent developments have turned out in loss of landscape diversity, biodiversity erosion, environment resources depletion. The actual physiognomy of the Italian countryside, from the plan to the most represented mountain areas, is characterized by modern and traditional agricultural landscapes, not even distinguished, frequently overlaid. They represent the “forms” of the today’s arboriculture visible in the historic and contemporary gardens, in the remnants of the coltura promiscua, in the polycultural growing systems, as well as in the specialized orchards. The contemporary landscape of fruit trees and vines witnesses its history, characters and functions particularly in terms of biological and environmental diversity maintenance. This review is focused on the traditional fruit tree and vine’s landscapes still well rooted in the Italian agricultural landscape, but differently conserved, managed and perceived. The aim of the historical excursus is to go through their development phases and to underline the changing functions. A survey of the multifunctionality recognisable in the traditional agricultural landscape, in particular their role in the preservation of environmental resources, agro-ecosystems functionality, landscape diversity and cultural memory justifies the interest in the preservation and valorisation of these productive landscapes and of the traditional agricultural techniques, thank to which they are maintained. The preserving strategies adopted in the European countries as well as the modern study approaches based on multidisciplinary methodologies are also analysed

    SPIDER X - Environmental effects in central and satellite early-type galaxies through the stellar fossil record

    Full text link
    A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than "isolated" systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than "isolated" centrals, mainly because of gas-rich interactions with their companion galaxies.Comment: 22 pages, 19 figures, accepted for publication in MNRA

    SPIDER - V. Measuring Systematic Effects in Early-Type Galaxy Stellar Masses from Photometric SED Fitting

    Full text link
    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of 40,000 galaxies from the Sloan Digital Sky Survey, of which 5,000 are also in the UKIRT Infrared Deep Sky Survey, with spectroscopic redshifts in the range 0.05 \leq z \leq 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A) are also computed from fits to SDSS spectra using various population models. These constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the IMF and extinction law yielding systematic biases on the mass of nearly a factor of 2, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only 0.06 dex, adding uncertainties of 0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{\sigma} uncertainties of 0.15 dex. Finally, we find that stellar masses are less affected by absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by 0.15 dex, with errors of 0.02 dex at the 95% CL for the median stellar age subsample.Comment: Accepted for Publication in the Astronomical Journa
    • …
    corecore