1,519 research outputs found

    Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes

    Full text link
    Multifilamentary MgB2/Fe wires and tapes with high transport critical current densities have been fabricated using a straightforward powder-in-tube (PIT) process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2 at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires and tapes quenched due to insufficient thermal stability of filaments. Both the processing routes and deformation methods were found to be important factors for fabricating multifilamentary MgB2 wires and tapes with high transport jc values.Comment: 13 pages, 7 figure

    Transport Properties and Exponential n-values of Fe/MgB2 Tapes With Various MgB2 Particle Sizes

    Full text link
    Fe/MgB2 tapes have been prepared starting with pre-reacted binary MgB2 powders. As shown by resistive and inductive measurements, the reduction of particle size to a few microns by ball milling has little influence on Bc2, while the superconducting properties of the individual MgB2 grains are essentially unchanged. Reducing the particle size causes an enhancement of Birr from 14 to 16 T, while Jc has considerably increased at high fields, its slope Jc(B) being reduced. At 4.2K, values of 5.3*10^4 and 1.2*10^3 A/cm^2 were measured at 3.5 and 10 T, respectively, suggesting a dominant role of the conditions at the grain interfaces. A systematic variation of these conditions at the interfaces is undertaken in order to determine the limit of transport properties for Fe/MgB2 tapes. The addition of 5% Mg to MgB2 powder was found to affect neither Jc nor Bc2. For the tapes with the highest Jc values, very high exponential n factors were measured: n = 148, 89 and 17 at 3.5, 5 and 10T, respectively and measurements of critical current versus applied strain have been performed. The mechanism leading to high transport critical current densities of filamentary Fe/MgB2 tapes based on MgB2 particles is discussed.Comment: Presented at ICMC 2003, 25-28 May 200

    Dielectric elastomer generator with equi-biaxial mechanical loading for energy harvesting

    Get PDF
    Dielectric elastomer generators (DEGs) are attractive candidates for harvesting electrical energy from mechanical work since they comprise relatively few moving parts and large elastomer sheets can be mass produced. Successfully demonstrations of the DEG prototypes have been reported from a diverse of energy sources, including ocean waves, wind, flowing water and human movement. The energy densities achieved, however, are still small compared with theoretical predictions. We show that significant improvements in energy density (550 J/kg with an efficiency of 22.1%), can be achieved using an equi-biaxial mechanical loading configuration, one that produces uniform deformation and maximizes the capacitance changes. Analysis of the energy dissipations indicates that mechanical losses, which are caused by the viscous losses both within the acrylic elastomer and within the thread materials used for the load transfer assembly, limits the energy conversion efficiency of the DEG. Addressing these losses is suggested to increase the energy conversion efficiency of the DEG. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Engineering and Applied Science
    • …
    corecore