34,159 research outputs found

    Ergodicity from Nonergodicity in Quantum Correlations of Low-dimensional Spin Systems

    Full text link
    Correlations between the parts of a many-body system, and its time dynamics, lie at the heart of sciences, and they can be classical as well as quantum. Quantum correlations are traditionally viewed as constituted out of classical correlations and magnetizations. While that of course remains so, we show that quantum correlations can have statistical mechanical properties like ergodicity, which is not inherited from the corresponding classical correlations and magnetizations, for the transverse anisotropic quantum XY model in one-, two-, and quasi two-dimension, for suitably chosen transverse fields and temperatures. The results have the potential for applications in decoherence effects in realizable quantum computers.Comment: 8 pages, 6 figures, RevTeX 4.

    A topological spin glass in diluted spin ice

    Get PDF
    It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.Comment: 4 pages + supplementary materia
    • …
    corecore