22,847 research outputs found

    Spin of Chern-Simons vortices

    Get PDF
    We discuss a novel method of obtaining the fractional spin of abelian and nonabelian Chern-Simons vortices. This spin is interpreted as the difference between the angular momentum obtained by modifying Schwinger's energy momentum tensor by the Gauss constraint, and the canonical (Noether) angular momentum. It is found to be a boundary term depending only on the gauge field and, hence, is independent of the matter sector to which the Chern-Simons term couples. Addition of the Maxwell term does not alter the fractional spin.Comment: 11 pages, Latex file, no figure

    Observation of robust flat-band localization in driven photonic rhombic lattices

    Get PDF
    We demonstrate that a flat-band state in a quasi-one-dimensional rhombic lattice is robust in the presence of external drivings along the lattice axis. The lattice was formed by periodic arrays of evanescently coupled optical waveguides, and the external drivings were realized by modulating the paths of the waveguides. We excited a superposition of flat-band eigenmodes at the input and observed that this state does not diffract in the presence of static as well as high-frequency sinusoidal drivings. This robust localization is due to destructive interference of the analogous wavefunction and is associated with the symmetry in the lattice geometry. We then excited the dispersive bands and observed Bloch oscillations and coherent destruction of tunneling. {\textcopyright} 2017 Optical Society of America.Comment: 5 pages, 7 figure

    Chiral odd GPDs in transverse and longitudinal impact parameter spaces

    Full text link
    We investigate the chiral odd generalized parton distributions (GPDs) for non-zero skewness ζ\zeta in transverse and longitudinal position spaces by taking Fourier transform with respect to the transverse and longitudinal momentum transfer respectively. We present overlap formulas for the chiral-odd GPDs in terms of light-front wave functions (LFWFs) of the proton both in the ERBL and DGLAP regions. We calculate them in a field theory inspired model of a relativistic spin 1/2 composite state with the correct correlation between the different LFWFs in Fock space, namely that of the quantum fluctuations of an electron in a generalized form of QED. We show the spin-orbit correlation effect of the two-particle LFWF as well as the correlation between the constituent spin and the transverse spin of the target.Comment: 1 figure and references added, typos corrected. version to appear in Phys.Rev.
    corecore