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We demonstrate that a flat-band state in a quasi-one-
dimensional rhombic lattice is robust in the presence of ex-
ternal drivings along the lattice axis. The lattice was formed
by periodic arrays of evanescently coupled optical wave-
guides, and the external drivings were realized by modulat-
ing the paths of the waveguides. We excited a superposition
of flat-band eigenmodes at the input and observed that this
state does not diffract in the presence of static, as well as high-
frequency sinusoidal drivings. This robust localization is due
to destructive interference of the analogous wavefunction
and is associated with the symmetry in the lattice geometry.
We then excited the dispersive bands and observed Bloch
oscillations and coherent destruction of tunneling.
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Nearly a century ago, it was predicted that an electron in a peri-
odic potential and uniform electric field can exhibit periodic
Bloch oscillations [1–6] due to the formation of a Wannier–
Stark ladder. An ac electric field, on the other hand, can
renormalize the effective tunneling probability [7], causing in-
teresting localization effects, such as dynamic localization [8].
The dynamics of electrons is also influenced by an external
magnetic flux, the presence of disorder, and particle inter-
actions. It is of great interest to study these fundamental
transport phenomena in a lattice geometry supporting non-
dispersive (flat) bands; see [9–23] for recent works on flat-band
lattices. Flat-band eigenmodes are degenerate with infinite
effective mass; i.e., a flat-band state has no time evolution.
However, in the presence of external electric and magnetic
fields, the initial flat-band state of the instantaneous
Hamiltonian, Ĥ�t � 0�, can exhibit complicated dynamics,
such as Bloch oscillations associated with Landau–Zener tun-
neling [24,25], depending on the lattice geometry and the

external drivings. These intriguing phenomena are at the heart
of condensed matter physics, and can be investigated in the
system of ultracold atoms in optical lattices [26] and periodic
arrays of coupled optical waveguides (photonic lattices)
[27,28]. In fact, localized flat-band state was experimentally
demonstrated using lattice geometries such as Lieb [13–16],
Kagome [29], rhombic [17], and stub [30].

In this Letter, we consider a quasi-one-dimensional photonic
rhombic [or diamond, Figs. 1(a) and 1(b)] lattice with three sites
(a, b, and c) per unit cell. This lattice geometry has been pre-
viously used to theoretically study various interesting effects,
such as magnetic-field-induced Aharonov–Bohm caging for
both interacting and non-interacting particles [31–33],
Anderson localization [34], conservative and PT-symmetric
compactons [35], and Landau–Zener Bloch oscillations [25].
In the nearest neighbor tight binding approximation, diagonal-
izing the Fourier-transformed single particle Hamiltonian of
the rhombic chain, one obtains the following dispersion rela-
tions [31]: ε0;� � 0;�2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�kd�

p
, where κ is the nearest

neighbor hopping amplitude (or coupling constant), d is the lat-
tice constant, and k is the quasimomentum. The lattice supports
three energy bands, two dispersive (ε�) and one non-dispersive
(ε0) in the middle; see Fig. 1(c). A flat-band state can be excited
by initially exciting the b and c sites of a unit cell with equal
intensity and opposite phases [17].

Fig. 1. (a) Quasi-one-dimensional rhombic lattice driven by an ex-
ternal force, F . The unit cell contains three sites: a, b, and c. (b) In the
photonic setup, the static and sinusoidal drivings are implemented by
modulating the paths of the waveguides; see the text. (c) Band struc-
ture calculated by diagonalizing the Fourier transformed Hamiltonian
with F � 0. In this situation, the non-dispersive (flat) band can be
excited by initially exciting the fEb

s ; Ec
s g � f1∕ ffiffiffi

2
p

; −1∕
ffiffiffi
2

p g state;
see [17].
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Under the influence of aweak analogous static force, we show
that a state prepared in the dispersive bands of the rhombic lat-
tice exhibits Bloch oscillations [3–6]; however, a flat-band state
keeps the compactness of the initial state (as ∂tψ0

k�t� � 0; see
also Khomeriki and Flach [25]). We then show that an analo-
gous high-frequency sinusoidal force modifies the band
structure, keeping the flat-band unaffected. Interestingly, the in-
itial flat-band state overlaps only with the degenerate Floquet
eigenstates and, hence, remains localized. For a state in the dis-
persive bands, on the other hand, we observed renormalization
of tunneling [36–39], as would be expected.

The propagation of light across a one-dimensional photonic
lattice, where the axes of all the waveguides are simultaneously
and slowly bending along the lattice axis (x), is governed by the
following scalar-paraxial equation [27,28]:

iλ-
∂
∂z

E�x; z� �
�
−
λ-2

2n0

∂2

∂x2
− Δn�x� � F �z�x

�
E�x; z�; (1)

where E�x; z� is the electric field envelope of the light waves, n0
is the average refractive index of the medium, λ � 2πλ- is the
free-space wavelength, Δn�x� is the transverse refractive index
profile, z plays the role of time, and F � −n0∂2z x0�z�. Here
x0�z� describes the bending profile of each waveguide, and
�x; z� is the coordinate system moving with the lattice.
Equation (1) is analogous to the Schrödinger equation for a
quasiparticle (e.g., an electron) in a one-dimensional lattice
driven by an external force, F . For weak external fields, neglect-
ing the excitation of higher Bloch bands, the following coupled-
mode equations are obtained [25,33] for a rhombic lattice:

�i∂z � 2sβ�Ea
s � −κ�Eb

s � Eb
s−1 � Ec

s � Ec
s−1�;

�i∂z � �2s � 1�β�Eb
s � −κ�Ea

s � Ea
s�1�;

�i∂z � �2s � 1�β�Ec
s � −κ�Ea

s � Ea
s�1�; (2)

where fEa
s ; Eb

s ; Ec
s g are the electric field amplitudes of the light

waves at the a, b, and c sites of the s-th unit cell, respectively.
The analogous static electric field is realized by circularly curv-
ing the waveguide axis, x20 � R2 − z2, where R is the radius of
curvature, implying almost a linear shift in the propagation
constant (site energy) along the lattice axis, β � n0d∕�2Rλ-�.
Similarly, a sinusoidal ac field is realized by sinusoidally modu-
lating the waveguide paths along the lattice axis. In this case,
x0 � A sin�ωz� and β�z� � K sin�ωz�, where A and ω are
the amplitude and frequency of the modulation, and
K � n0Aω2d∕�2λ-�; see [8,38–43] and the references therein
for more details on driven photonic lattices. The intensity
distribution at the output of the photonic lattice for a given
input excitation is obtained by numerically solving Eq. (2).

Curved photonic lattices were fabricated inside a borosilicate
substrate (Corning Eagle2000) using ultrafast laser inscription
technique [44]. The substrate was mounted on x-y-z transla-
tion stages, and each waveguide was fabricated by translating
the substrate through the focus of the fs laser pulses (350 fs,
500 kHz, and 1030 nm). Fabrication parameters were opti-
mized to realize well-confined single-mode waveguides for op-
eration at 780 nm; see [13,17] for fabrication details. We note
that carefully engineered photonic lattices were previously used
to experimentally simulate various quantum phenomena, in-
cluding the investigation of localization effects, i.e., the inhib-
ition of transport caused by disorders [45,46], external fields
[8,38–43], and Kerr nonlinearity [47].

It is evident from Eq. (2) that an initial state occupying only
bs and cs sites with equal intensity and opposite phases, which
excites flat-band eigenmodes, does not have any time evolution
in a static field. To demonstrate this, seven circularly curved
finite photonic lattices (with propagation lengths 10–70 mm
in steps of 10 mm) were fabricated with 12 unit cells and a
radius of curvature R � 1.8 m. For all the lattices, waveguide-
to-waveguide separation was d∕

ffiffiffi
2

p � 17 μm, and the cou-
pling constant was κ � 0.034 mm−1. First, we excited an equal
superposition of flat-band eigenmodes by launching the input
state fEb

6; E
c
6g � f1∕ ffiffiffi

2
p

; −1∕
ffiffiffi
2

p g and measured the output
intensity distributions at seven different values of propagation
distances. As shown in Figs. 2(a)–2(c), we observe that this in-
put state remains localized without significantly tunneling to
other lattice sites. However, when the dispersive bands
were excited, launching an orthogonal mode (we call it the
equal-phase mode, fEb

6; E
c
6g � f1∕ ffiffiffi

2
p

; 1∕
ffiffiffi
2

p g), we observe a
breathing motion (Figs. 3 and 4) of the intensity distribution
which is the characteristic of Bloch oscillations. In Fig. 4, the
measured variations of the light intensities (red circles,
�jEb

6j2 � jEc
6j2�∕2; blue squares, �jEa

6j2 � jEa
7j2�∕2) are plot-

ted as a function of z which are in good agreement with the
numerically calculated results. We note that the input states
were prepared using a zero-order nulled diffractive optical
element; see [17].

In the presence of a sinusoidal driving, the Hamiltonian that
describes the system is periodic in z, the analogous time, i.e.,
Ĥ�z� � Ĥ�z � z0� where z0 � 2π∕ω. In this situation, using
the Floquet theory [36], the quasienergy spectrum is
obtained by diagonalizing the evolution operator defined as
Û � T exp�−i R z0

0 Ĥ�z 0�dz 0�, where T indicates the time or-
dering. The Floquet quasienergy spectrum for a high-frequency
sinusoidal driving (with K ∕ω � 0.912) is shown in Fig. 5(a)

Fig. 2. Robust flat-band localization in the presence of static driv-
ing. (a)–(c) Measured output intensity distributions after a propaga-
tion of 10, 30, and 70 mm, respectively. The flat-band was excited by
launching the fEb

6; E
c
6g � f1∕ ffiffiffi

2
p

; −1∕
ffiffiffi
2

p g state at the input of cir-
cularly curved photonic rhombic lattices. Each image is normalized
such that the total output power is 1. The circles indicate the initially
(at z � 0) excited lattice sites.

Fig. 3. Observation of Bloch oscillations when the dispersive
bands are excited by launching the equal-phase state, fEb

6; E
c
6g �

f1∕ ffiffiffi
2

p
; 1∕

ffiffiffi
2

p g; see Fig. 4. The propagation distances were 10, 30,
and 70 mm for (a), (b), and (c), respectively.
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[open squares]. There are two important aspects to be noted.
First, the flat-band is not destroyed by the ac driving
and, second, an initial flat-band state (i.e., fEb

6; E
c
6g �

f1∕ ffiffiffi
2

p
; −1∕

ffiffiffi
2

p g) overlaps only with the degenerate Floquet ei-
genstates; see the blue circles. Therefore, this input state is ex-
pected to remain localized. Figure 5(b) shows the Floquet
spectrum as a function of K ∕ω; irrespective of the value of
the K ∕ω, the initial flat-band state overlaps only with the
eigenmodes at zero quasienergy (shown by the blue circles).
Note that the dispersive bands of the lattice (pseudo) collapse
[36,38] when J 0�K ∕ω� � 0, i.e., K ∕ω � 2.405 [J is the
Bessel function of the first kind]. In other words, a sinusoidal
driving renormalizes the effective coupling constant as
jκeff∕κj � jJ 0�K ∕ω�j.

To observe the effect of sinusoidal driving, we fabricated five
sinusoidally modulated rhombic lattices (70 mm long) with the
amplitude of modulation A � 6 μm to 14 μm in steps of 2 μm,
and the spatial frequency ω � 1.5708 mm−1. The output in-
tensity distributions for two types of input states are shown in
Fig. 6. It was observed that the flat-band modes are not affected
by the sinusoidal driving, whereas the output intensity distri-
bution for the equal-phase mode is determined by K ∕ω. Note
that for Fig. 6(g), the ratio of the field magnitude to the field
frequency (i.e., K ∕ω) is close to the first root of J 0 causing
coherent destruction of tunneling. The effective coupling
constant of a modulated lattice for a given value of K and
ω was evaluated by simulating a 70 mm long straight photonic
lattice, and varying the coupling strength to optimally fit the
observed output intensity distribution. The estimated values of
normalized effective coupling constants, jκeff∕κj, are in agree-
ment with the theoretical prediction, as shown in Fig. 7(a).

The robust localization of the flat-band modes in the rhom-
bic chain can also be explained intuitively. In the presence of a
static or ac driving, the effective propagation constant (or the
analogous site energy) of the waveguides in the lattice at a given
value of z is determined by the driving strength and its direc-
tion [48,49]. If the lattice is driven along the lattice axis, the b
and c sites of the s-th unit cell have the same effective propa-
gation constant which is shifted by �β, compared to the a
site of the s-th and the �s � 1�-th unit cell, respectively; see
Fig. 7(b). In this situation, the flat-band input state cannot tun-
nel to the nearest neighbor sites due to destructive interference
as in the undriven case. Note that an extended initial flat-band
state in real space will also exhibit this robust localization. On
the basis of this argument, one can infer that the symmetry in
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Fig. 4. Numerically calculated variation of light intensity along the
propagation direction of a circularly curved photonic rhombic lattice
for the initial condition, fEb

6; E
c
6g � f1∕ ffiffiffi

2
p

; 1∕
ffiffiffi
2

p g. Here κ �
0.034 mm−1 and R � 1.8 m. Note that the period of the breathing
motion of the intensity distribution is zB � 2Rλ∕�n0d � �
77.87 mm. The red circles and the blue squares are the measured
values of the average intensities at the waveguides that were excited
at the input [i.e., �jEb

6j2 � jEc
6j2�∕2] and their nearest neighbor sites

[i.e., �jEa
6j2 � jEa

7j2�∕2], respectively.
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Fig. 5. (a) Numerically calculated quasienergy spectrum for a sinus-
oidally driven rhombic lattice with 12 unit cells (open squares). Here
κ � 0.034 mm−1, ω∕κ � 46.2, and K ∕ω � 0.912 (A � 4 μm).
Note that the driving does not destroy the flat-band, shown by the
open blue squares. The blue (red) circles show the calculated values of
the overlap of the initial flat-band state (equal-phase state) with the
Floquet eigenstates. (b) Floquet spectrum as a function of K ∕ω.
When the fEb

6; E
c
6g � f1∕ ffiffiffi

2
p

; −1∕
ffiffiffi
2

p g state is excited, only the
eigenstates at zero quasienergy (shown by the blue circles) are excited,
regardless of the value of K ∕ω. The dispersive bands collapse
at K ∕ω � 2.405, causing coherent destruction of tunneling; see
Fig. 6(g).

Fig. 6. Experimentally measured intensity distributions at the out-
put of the 70 mm long modulated lattices for four different values of
amplitude of modulations (A � 6, 8, 10, and 12 μm, respectively).
For the left column, (a)–(d), the flat-band state was launched at
the input. For the right column, (e)–(h), the dispersive bands were
excited by launching the equal-phase state at the input. The flat-band
state is robust in the presence of sinusoidal drivings. For the equal-
phase input state, the output intensity distribution is determined
by K ∕ω, as the effective coupling constant is renormalized as
jκeff∕κj � jJ 0�K ∕ω�j. Note that for (g) K ∕ω is close to the first root
of J 0�K ∕ω�, causing coherent destruction of tunneling.
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the lattice geometry is crucial to observe this robust localization
in the presence of both static and ac drivings.

In conclusion, we investigated the dynamics of the initial
states prepared in the dispersive and non-dispersive bands of
the photonic rhombic lattices in the presence of both static
and high-frequency sinusoidal drivings along the lattice axis.
We experimentally excited flat-band eigenmodes and show that
they remain localized in the presence of these drivings.
However, when dispersive bands were excited by launching
an orthogonal input state, we observed Bloch oscillations
and coherent destruction of tunneling, respectively. This robust
flat-band localization is due to destructive interference of the
analogous wavefunction and is associated with the symmetry
in the lattice geometry.

Raw experimental data are available through Heriot-
Watt University PURE research data management
system (http://dx.doi.org/10.17861/9fa92007‑99a3‑4c71‑
a58e‑9d9dc6ed9435).
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