405 research outputs found
Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone
We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model (CAM). The surface temperature contrast between day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen on gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from day to night side, with both the Rossby deformation radius and the Rhines length exceeding planetary radius, which occurs for planets around stars with effective temperatures of 3300 K to 4500 K (rotation period > 20 days). Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, with the Rossby deformation radius is less than planetary radius, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days). In between is the Rhines rotation regime, which retains a thermally-direct circulation from day to night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000 K to 3300 K (rotation period ∼ 5 to 20 days), where the Rhines length is greater than planetary radius but the Rossby deformation radius is less than planetary radius. The dynamical state can be observationally inferred from comparing the morphology of the thermal emission phase curves of synchronously rotating planets
Optimal Location of Sources in Transportation Networks
We consider the problem of optimizing the locations of source nodes in
transportation networks. A reduction of the fraction of surplus nodes induces a
glassy transition. In contrast to most constraint satisfaction problems
involving discrete variables, our problem involves continuous variables which
lead to cavity fields in the form of functions. The one-step replica symmetry
breaking (1RSB) solution involves solving a stable distribution of functionals,
which is in general infeasible. In this paper, we obtain small closed sets of
functional cavity fields and demonstrate how functional recursions are
converted to simple recursions of probabilities, which make the 1RSB solution
feasible. The physical results in the replica symmetric (RS) and the 1RSB
frameworks are thus derived and the stability of the RS and 1RSB solutions are
examined.Comment: 38 pages, 18 figure
Exploring Kepler Giant Planets in the Habitable Zone
The Kepler mission found hundreds of planet candidates within the habitable
zones (HZ) of their host star, including over 70 candidates with radii larger
than 3 Earth radii () within the optimistic habitable zone (OHZ)
(Kane et al. 2016). These giant planets are potential hosts to large
terrestrial satellites (or exomoons) which would also exist in the HZ. We
calculate the occurrence rates of giant planets (~3.0--25~) in
the OHZ and find a frequency of for G stars, for K stars, and for M stars. We compare this with
previously estimated occurrence rates of terrestrial planets in the HZ of G, K
and M stars and find that if each giant planet has one large terrestrial moon
then these moons are less likely to exist in the HZ than terrestrial planets.
However, if each giant planet holds more than one moon, then the occurrence
rates of moons in the HZ would be comparable to that of terrestrial planets,
and could potentially exceed them. We estimate the mass of each planet
candidate using the mass-radius relationship developed by Chen & Kipping
(2016). We calculate the Hill radius of each planet to determine the area of
influence of the planet in which any attached moon may reside, then calculate
the estimated angular separation of the moon and planet for future imaging
missions. Finally, we estimate the radial velocity semi-amplitudes of each
planet for use in follow up observations.Comment: 19 Pages, 16 Figures, 5 Table
A List of Galaxies for Gravitational Wave Searches
We present a list of galaxies within 100 Mpc, which we call the Gravitational
Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up
searches of electromagnetic counterparts from gravitational wave searches. Due
to the time constraints of rapid follow-up, a locally available catalogue of
reduced, homogenized data is required. To achieve this we used four existing
catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog
of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains
information on sky position, distance, blue magnitude, major and minor
diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these
quantities are either taken directly from the literature or estimated based on
our understanding of the uncertainties associated with the measurement method.
By using the PGC numbering system developed for HyperLEDA, the catalogue has a
reduced level of degeneracies compared to catalogues with a similar purpose and
is easily updated. We also include 150 Milky Way globular clusters. Finally, we
compare the GWGC to previously used catalogues, and find the GWGC to be more
complete within 100 Mpc due to our use of more up-to-date input catalogues and
the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages,
7 figure
The Prospect of Detecting Volcanic Signatures on an ExoEarth Using Direct Imaging
The James Webb Space Telescope (JWST) has provided the first opportunity to
study the atmospheres of terrestrial exoplanets and estimate their surface
conditions. Earth-sized planets around Sun-like stars are currently
inaccessible with JWST however, and will have to be observed using the next
generation of telescopes with direct imaging capabilities. Detecting active
volcanism on an Earth-like planet would be particularly valuable as it would
provide insight into its interior, and provide context for the commonality of
the interior states of Earth and Venus. In this work we used a climate model to
simulate four exoEarths over eight years with ongoing large igneous province
eruptions with outputs ranging from 1.8-60 Gt of sulfur dioxide. The
atmospheric data from the simulations were used to model direct imaging
observations between 0.2-2.0 m, producing reflectance spectra for every
month of each exoEarth simulation. We calculated the amount of observation time
required to detect each of the major absorption features in the spectra, and
identified the most prominent effects that volcanism had on the reflectance
spectra. These effects include changes in the size of the O, O, and
HO absorption features, and changes in the slope of the spectrum. Of these
changes, we conclude that the most detectable and least ambiguous evidence of
volcanism are changes in both O absorption and the slope of the spectrum.Comment: 13 pages, 5 figures, 4 tables, Accepted for publication in AJ
(September 26, 2023
Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600
approach the era of first detections, we review the current knowledge of the
coalescence rates and the mass and spin distributions of merging neutron-star
and black-hole binaries. We emphasize the bi-directional connection between
gravitational-wave astronomy and conventional astrophysics. Astrophysical input
will make possible informed decisions about optimal detector configurations and
search techniques. Meanwhile, rate upper limits, detected merger rates, and the
distribution of masses and spins measured by gravitational-wave searches will
constrain astrophysical parameters through comparisons with astrophysical
models. Future developments necessary to the success of gravitational-wave
astronomy are discussed.Comment: Replaced with version accepted by CQG
LOOC UP: Locating and observing optical counterparts to gravitational wave bursts
Gravitational wave (GW) bursts (short duration signals) are expected to be
associated with highly energetic astrophysical processes. With such high
energies present, it is likely these astrophysical events will have signatures
in the EM spectrum as well as in gravitational radiation. We have initiated a
program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in
Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst
candidates. The proposed method analyzes near real-time data from the
LIGO-Virgo network, and then uses a telescope network to seek optical-transient
counterparts to candidate GW signals. We carried out a pilot study using
S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools
for such a search. We will present the method, with an emphasis on the
potential for such a search to be carried out during the next science run of
LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional
references, and minor text changes v3) added 1 figure, additional references,
and minor text changes. v4) Updated references and acknowledgments. To be
published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit
The Anti-Inflammatory Drug Leflunomide Is an Agonist of the Aryl Hydrocarbon Receptor
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases.During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR.These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders
- …