34 research outputs found
Fluid challenges in intensive care: the FENICE study A global inception cohort study
Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account
Extraction of Hydroxyapatite from Camel Bone for Bone Tissue Engineering Application
Waste tissues such as mammalian bone are a valuable source from which to extract hydroxyapatite. Camel bone-based hydroxyapatite (CBHA) was extracted from the femur of camel bones using a defatting and deproteinization procedure. The extracted CBHA was mechanically, chemically, physically, morphologically and structurally characterized. Fourier-Transform Infra-Red (FTIR) spectra, Micro-Raman, and X-ray diffraction analysis confirmed successful extraction of hydroxyapatite. The mechanical properties of the CBHA scaffold were measured using a Universal Instron compression tester. Scanning electron microscopy showed the presence of a characteristic interconnected porous architecture with pore diameter ranging from 50–600 µm and micro-computer tomography (Micro-CT) analysis identified a mean porosity of 73.93. Thermogravimetric analysis showed that the CBHA was stable up to 1000 °C and lost only 1.435% of its weight. Inductively coupled plasma–mass spectrometry (ICP-MS) and Energy-dispersive-X-ray (EDX) analysis demonstrated the presence of significant amounts of calcium and phosphorus and trace ions of sodium, magnesium, zinc, lead and strontium. Following 21 days of incubation in simulated body fluid (SBF), the pH fluctuated between 10–10.45 and a gradual increase in weight loss was observed. In conclusion, the extracted CBHA is a promising material for future use in bone tissue regeneration applications