19 research outputs found

    A Clinical Trial to Validate Event-Related Potential Markers of Alzheimer\u27s Disease in Outpatient Settings

    Get PDF
    INTRODUCTION: We investigated whether event-related potentials (ERP) collected in outpatient settings and analyzed with standardized methods can provide a sensitive and reliable measure of the cognitive deficits associated with early Alzheimer\u27s disease (AD). METHODS: A total of 103 subjects with probable mild AD and 101 healthy controls were recruited at seven clinical study sites. Subjects were tested using an auditory oddball ERP paradigm. RESULTS: Subjects with mild AD showed lower amplitude and increased latency for ERP features associated with attention, working memory, and executive function. These subjects also had decreased accuracy and longer reaction time in the target detection task associated with the ERP test. DISCUSSION: Analysis of ERP data showed significant changes in subjects with mild AD that are consistent with the cognitive deficits found in this population. The use of an integrated hardware/software system for data acquisition and automated data analysis methods make administration of ERP tests practical in outpatient settings

    Visual short-term memory relates to tau and amyloid burdens in preclinical autosomal dominant Alzheimer's disease

    Get PDF
    Background: Over the past decade, visual short-term memory (VSTM) binding tests have been shown to be one of the most sensitive behavioral indicators of Alzheimer’s disease (AD), especially when they require the binding of multiple features (e.g., color and shape). Recently, it has become possible to directly measure amyloid and tau levels in vivo via positron emission tomography (PET). To this point, these behavioral and neurochemical markers have not been compared in humans with AD or at risk for it. Methods: In a cross-sectional study, we compared VSTM performance to tau and amyloid concentrations, measured by PET, in individuals certain to develop AD by virtue of their inheritance of the presenilin-1 E280A mutation. These included 21 clinically unimpaired subjects and 7 subjects with early mild cognitive impairment (MCI), as well as 30 family members who were not carriers of the mutation. Results: We found that VSTM performance correlated strongly with tau in entorhinal cortex and inferior temporal lobe, and also with amyloid when examining asymptomatic carriers only. The condition requiring binding was not preferentially linked to tau—in fact, the non-binding “shape only” condition showed a stronger relationship. Conclusions: The results confirm VSTM’s status as an early marker of AD pathology, and raise interesting questions as to the course of binding-specific versus non-binding aspects of VSTM in early AD

    Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis-

    No full text
    Introduction: We performed a systematic review and meta-analysis of the Alzheimer’s disease (AD)literature to examine consistency of functional connectivity alterations in AD dementia and mildcognitive impairment, using resting-state functional magnetic resonance imaging.Methods: Studies were screened using a standardized procedure. Multiresolution statistics wereperformed to assess the spatial consistency of findings across studies.Results: Thirty-four studies were included (1363 participants, average 40 per study). Consistentalterations in connectivity were found in the default mode, salience, and limbic networks in patientswith AD dementia, mild cognitive impairment, or in both groups.We also identified a strong tendencyin the literature toward specific examination of the default mode network.Discussion: Convergent evidence across the literature supports the use of resting-state connectivityas a biomarker of AD. The locations of consistent alterations suggest that highly connected hubregions in the brain might be an early target of AD. 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is anopen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Keywords: Resting-state fMRI; Functional connectivity; Alzheimer’s disease; Mild cognitive impairment; Meta-analysis1. IntroductionAlzheimer’s disease (AD) exists on a continuumcomprising

    Waning locus coeruleus integrity precedes cortical tau accrual in preclinical autosomal dominant Alzheimer's disease

    No full text
    Introduction Autopsy studies recognize the locus coeruleus (LC) as one of the first sites accumulating tau in Alzheimer's disease (AD). Recent AD work related in vivo LC magnetic resonance imaging (MRI) integrity to tau and cognitive decline; however, relationships of LC integrity to age, tau, and cognition in autosomal dominant AD (ADAD) remain unexplored. Methods We associated LC integrity (3T-MRI) with estimated years of onset, cortical amyloid beta, regional tau (positron emission tomography [PET]) and memory (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word-List-Learning) among 27 carriers and 27 non-carriers of the presenilin-1 (PSEN1) E280A mutation. Longitudinal changes between LC integrity and tau were evaluated in 10 carriers. Results LC integrity started to decline at age 32 in carriers, 12 years before clinical onset, and 20 years earlier than in sporadic AD. LC integrity was negatively associated with cortical tau, independent of amyloid beta, and predicted precuneus tau increases. LC integrity was positively associated with memory. Discussion These findings support LC integrity as marker of disease progression in preclinical ADAD

    Lower novelty-related locus coeruleus function is associated with A beta-related cognitive decline in clinically healthy individuals

    No full text
    Animal and human imaging research reported that the presence of cortical Alzheimer's Disease's (AD) neuropathology, beta-amyloid and neurofibrillary tau, is associated with altered neuronal activity and circuitry failure, together facilitating clinical progression. The locus coeruleus (LC), one of the initial subcortical regions harboring pretangle hyperphosphorylated tau, has widespread connections to the cortex modulating cognition. Here we investigate whether LC's in-vivo neuronal activity and functional connectivity (FC) are associated with cognitive decline in conjunction with beta-amyloid. We combined functional MRI of a novel versus repeated face-name paradigm, beta-amyloid-PET and longitudinal cognitive data of 128 cognitively unimpaired older individuals. We show that LC activity and LC-FC with amygdala and hippocampus was higher during novelty. We also demonstrated that lower novelty-related LC activity and LC-FC with hippocampus and parahippocampus were associated with steeper beta-amyloid-related cognitive decline. Our results demonstrate the potential of LC's functional properties as a gauge to identify individuals at-risk for AD-related cognitive decline.Older individuals exhibiting diminished function of the locus coeruleus while learning new information show faster cognitive decline that is typical for Alzheimer's disease

    Lower novelty-related locus coeruleus function is associated with A beta-related cognitive decline in clinically healthy individuals

    No full text
    Animal and human imaging research reported that the presence of cortical Alzheimer's Disease's (AD) neuropathology, beta-amyloid and neurofibrillary tau, is associated with altered neuronal activity and circuitry failure, together facilitating clinical progression. The locus coeruleus (LC), one of the initial subcortical regions harboring pretangle hyperphosphorylated tau, has widespread connections to the cortex modulating cognition. Here we investigate whether LC's in-vivo neuronal activity and functional connectivity (FC) are associated with cognitive decline in conjunction with beta-amyloid. We combined functional MRI of a novel versus repeated face-name paradigm, beta-amyloid-PET and longitudinal cognitive data of 128 cognitively unimpaired older individuals. We show that LC activity and LC-FC with amygdala and hippocampus was higher during novelty. We also demonstrated that lower novelty-related LC activity and LC-FC with hippocampus and parahippocampus were associated with steeper beta-amyloid-related cognitive decline. Our results demonstrate the potential of LC's functional properties as a gauge to identify individuals at-risk for AD-related cognitive decline.Older individuals exhibiting diminished function of the locus coeruleus while learning new information show faster cognitive decline that is typical for Alzheimer's disease
    corecore