41 research outputs found
The corticosteroid compounds prednisolone and vamorolone do not alter the nociception phenotype and exacerbate liver injury in sickle cell mice.
Clinicians often hesitate prescribing corticosteroids to treat corticosteroid-responsive conditions in sickle cell disease (SCD) patients because their use can be associated with complications (increased hospital readmission, rebound pain, strokes, avascular necrosis, acute chest syndrome). Consequently, SCD patients may receive suboptimal treatment for corticosteroid-responsive conditions. We conducted a preclinical trial of dissociative (vamorolone) and conventional (prednisolone) corticosteroid compounds to evaluate their effects on nociception phenotype, inflammation, and organ dysfunction in SCD mice. Prednisolone and vamorolone had no significant effects on nociception phenotype or anemia in homozygous mice. Conversely, prednisolone and vamorolone significantly decreased white blood cell counts and hepatic inflammation. Interestingly, the effects of vamorolone were milder than those of prednisolone, as vamorolone yielded less attenuation of hepatic inflammation compared to prednisolone. Compared to controls and heterozygotes, homozygotes had significant liver necrosis, which was significantly exacerbated by prednisolone and vamorolone despite decreased hepatic inflammation. These hepatic histopathologic changes were associated with increases in transaminases and alkaline phosphatase. Together, these results suggest that, even in the setting of decreasing hepatic inflammation, prednisolone and vamorolone were associated with significant hepatic toxicity in SCD mice. These findings raise the possibility that hepatic function deterioration could occur with the use of corticosteroids (conventional and dissociative) in SCD
In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities
Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL
Subanesthetic ketamine infusions for the treatment of children and adolescents with chronic pain: a longitudinal study
BACKGROUND: Chronic pain is common in children and adolescents and is often associated with severe functional disability and mood disorders. The pharmacological treatment of chronic pain in children and adolescents can be challenging, ineffective, and is mostly based on expert opinions and consensus. Ketamine, an N-methyl-D-aspartate receptor antagonist, has been used as an adjuvant for treatment of adult chronic pain and has been shown, in some instances, to improve pain and decrease opioid-requirement. We examined the effects of subanesthetic ketamine infusions on pain intensity and opioid use in children and adolescents with chronic pain syndromes treated in an outpatient setting. METHODS: Longitudinal cohort study of consecutive pediatric patients treated with subanesthetic ketamine infusions in a tertiary outpatient center. Outcome measurements included self-reported pain scores (numeric rating scale) and morphine-equivalent intake. RESULTS: Over a 15-month period, 63 children and adolescents (median age 15, interquartile range 12–17 years) with chronic pain received 277 ketamine infusions. Intravenous administration of subanesthetic doses of ketamine to children and adolescents on an outpatient basis was safe and not associated with psychotropic effects or hemodynamic perturbations. Overall, ketamine significantly reduced pain intensity (p <0.001) and yielded greater pain reduction in patients with complex regional pain syndrome (CRPS) than in patients with other chronic pain syndromes (p = 0.029). Ketamine-associated reductions in pain scores were the largest in postural orthostatic tachycardia syndrome (POTS) and trauma patients and the smallest in patients with chronic headache (p = 0.007). In 37 % of infusions, patients had a greater than 20 % reduction in pain score. Conversely, ketamine infusions did not change overall morphine-equivalent intake (p = 0.3). CONCLUSIONS: These data suggest that subanesthetic ketamine infusion is feasible in an outpatient setting and may benefit children and adolescents with chronic pain. Further, patients with CRPS, POTS, and a history of trauma-related chronic pain are more likely to benefit from this therapeutic modality