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The corticosteroid compounds 
prednisolone and vamorolone 
do not alter the nociception 
phenotype and exacerbate liver 
injury in sickle cell mice
Luis E. F. Almeida1,2, Jesse M. Damsker3, Sarah Albani2, Nina Afsar4, Sayuri Kamimura1,  
Drew Pratt4,5, David E. Kleiner4, Martha Quezado4, Heather Gordish-Dressman6 &  
Zenaide M. N. Quezado1,2

Clinicians often hesitate prescribing corticosteroids to treat corticosteroid-responsive conditions in 
sickle cell disease (SCD) patients because their use can be associated with complications (increased 
hospital readmission, rebound pain, strokes, avascular necrosis, acute chest syndrome). Consequently, 
SCD patients may receive suboptimal treatment for corticosteroid-responsive conditions. We 
conducted a preclinical trial of dissociative (vamorolone) and conventional (prednisolone) corticosteroid 
compounds to evaluate their effects on nociception phenotype, inflammation, and organ dysfunction 
in SCD mice. Prednisolone and vamorolone had no significant effects on nociception phenotype or 
anemia in homozygous mice. Conversely, prednisolone and vamorolone significantly decreased white 
blood cell counts and hepatic inflammation. Interestingly, the effects of vamorolone were milder than 
those of prednisolone, as vamorolone yielded less attenuation of hepatic inflammation compared to 
prednisolone. Compared to controls and heterozygotes, homozygotes had significant liver necrosis, 
which was significantly exacerbated by prednisolone and vamorolone despite decreased hepatic 
inflammation. These hepatic histopathologic changes were associated with increases in transaminases 
and alkaline phosphatase. Together, these results suggest that, even in the setting of decreasing 
hepatic inflammation, prednisolone and vamorolone were associated with significant hepatic toxicity 
in SCD mice. These findings raise the possibility that hepatic function deterioration could occur with the 
use of corticosteroids (conventional and dissociative) in SCD.

In sickle cell disease (SCD), a single point mutation in the β globin gene generates a variant form of hemoglobin 
(hemoglobin S), which, as a result of alteration in its tertiary structure, can polymerize during deoxygenation. In 
turn, polymerization of hemoglobin S damages erythrocyte membranes, leads to hemolysis and triggers a cascade 
of pathologic events including endothelial dysfunction, inflammation, increased adhesion of neutrophils and 
platelet activation, vaso-occlusion, ischemia/reperfusion injury, hypercoagulability, and oxidative stress1. These 
events have been shown to underlie clinical complications of SCD including acute and chronic pain, strokes, 
acute chest syndrome, as well as liver, kidney, cardiac, and pulmonary dysfunction1. Unfortunately, despite an 

1Department of Perioperatice Medicine, National Institutes of Health Clinical Center, National Institutes of 
Health, Besthesda, MD, USA. 2Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research 
Institute, Children’s National Health System, Washington, DC, USA. 3Reveragen BioPharma Inc., Rockville, MD, 
USA. 4Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Besthesda, MD, USA. 
5Department of Pathology, University of Michigan, Ann Arbor, MI, USA. 6Center for Genetic Medicine Research, 
Children’s Research Institute, Children’s National Health System, Department of Integrative Systems Biology, 
George Washington University School of Medicine and Health Sciences, Washington, DC, USA. Luis E. F. Almeida and 
Jesse M. Damsker contributed equally to this work. Correspondence and requests for materials should be addressed 
to Z.M.N.Q. (email: zquezado@nih.gov)

Received: 6 November 2017

Accepted: 28 March 2018

Published: xx xx xxxx

OPEN

mailto:zquezado@nih.gov


www.nature.com/scientificreports/

2SCIENtIFIC REPorTs |  (2018) 8:6081  | DOI:10.1038/s41598-018-24274-6

increased understanding of the pathobiology of SCD, there is a paucity of disease-modifying therapies and as a 
result, patients endure significant life-long morbidity and decreased life-expectancy1,2. Therefore, the develop-
ment of therapies targeting the mechanisms underlying these SCD complications are needed.

Ample evidence indicates that inflammation greatly contributes to the complications of SCD3. During steady 
state, SCD patients often have ongoing inflammation indicated by elevated white cell counts and increased 
levels of inflammatory mediators (interleukins, tumor necrosis factor, and adhesion molecules)4–6. During 
vaso-occlusive episodes (VOE), the most common complication and the reason for most hospital admissions 
in SCD patients, this ongoing inflammatory state worsens, which contributes to vascular occlusion, ischemia/
reperfusion injury, and acute pain5,7. Acute chest syndrome, another feared complication and a significant cause 
of morbidity and mortality in SCD8,9, is also associated with upregulation of cytokines, increased white blood cells 
adherence, and resulting vascular and pulmonary damage10,11. Given the role of inflammation in SCD-associated 
morbidities, researchers have evaluated the use of corticosteroids to treat VOEs and acute chest syndrome12,13. 
Small clinical trials in children have shown that a short course of methylprednisolone decreases the duration 
of severe pain and opioid requirements14,15. In patients admitted with acute chest syndrome, a course of dexa-
methasone decreased hospitalization time16,17. However, corticosteroid use in SCD is associated with complica-
tions, which can occur both during its administration and after its discontinuation including avascular necrosis, 
rebound pain, stroke, and acute chest syndrome12,18,19. Fearing these complications, clinicians often hesitate to 
administer corticosteroids to SCD patients20. However, this reluctance in using corticosteroids limits therapeutic 
options and may result in suboptimal treatment of corticosteroid-responsive conditions such as asthma, acute 
chest syndrome, and auto-immune pathologies, which are common in SCD. Therefore, development of new cor-
ticosteroid compounds that retain the desirable anti-inflammatory properties and have less of the undesirable 
side-effects, could provide a potential solution to mitigate the reported serious corticosteroid-related side effects 
in SCD.

The anti-inflammatory effects of corticosteroids are believed to be due to transrepression and their side-effects 
to transactivation of gene transcription. Vamorolone (ReveraGen BioPharma, Rockville, MD) is a new dissocia-
tive corticosteroids compound, which has been optimized to preferentially induce transrepression, thus retain-
ing anti-inflammatory properties and to minimize transactivation, thus minimizing undesirable side-effects and 
resulting in a milder side effect profile compared to conventional corticosteroids21–24. In mouse models of mus-
cle dystrophy, experimental autoimmune encephalomyelitis, colitis, and cortical brain tumors, vamorolone has 
been shown to increase cellular membrane stability, to improve disease-related symptoms and to have fewer 
side-effects (e.g. stunted growth, hormonal imbalance, immunosuppression) compared with conventional cor-
ticosteroids22–26. Furthermore, vamorolone was shown to be well tolerated in healthy adults and is currently in 
phase 2 clinical trials in patients with Duchenne muscular dystrophy.

We conducted a preclinical trial of vamorolone, a dissociative, and of prednisolone, a conventional corticos-
teroid, to test the hypotheses that in humanized SCD mice27–30 dissociative corticosteroids would improve the 
nociception phenotype, decrease signs of inflammation, and improve organ dysfunction. We designed a preclin-
ical trial of vamorolone and prednisolone enrolling humanized Townes sickle cell male and female mice of all 
genotypes [controls, heterozygotes, and homozygotes (sickling)]. Homozygotes in this mouse strain are known 
to recapitulate hematologic and nociception phenotypes of human SCD27–32.

Results
The number of animals enrolled in each experimental group is shown on the Table 1. All mice completed the 
treatment and outcome measurements except for four homozygotes and one heterozygote treated with vam-
orolone, three homozygotes, one heterozygote, and one control mouse treated with prednisolone, and one 
homozygote and one control mouse treated with vehicle, which died before trial completion.

Effect of prednisolone and vamorolone on nociception.  In order to evaluate the effects of the 
six-week treatment (prednisolone, vamorolone, or vehicle) according to genotype, we examined thermosensory 
response and current vocalization thresholds percent changes from baseline. Overall, regardless of genotype and 
sex, six-week treatment with vehicle, prednisolone, or vamorolone yielded similar percent changes from base-
line on hot plate and tail flick latencies and on current thresholds in response to 2000 or 5 Hz stimulations (all 
p > 0.05, Fig. 1A,B,C and E). Regarding 250 Hz current thresholds, the effects of prednisolone and vamorolone, 
compared with vehicle, on changes from baseline varied according to genotype as there was a significant treat-
ment*genotype interaction (p = 0.014) although neither the main effect of treatment or genotype reached statis-
tical significance (p = 0.07 and p = 0.18, respectively). As shown in Fig. 1D, the pattern of percent change from 
baseline over treatment groups is markedly different for each genotype. Whereas control mice showed increasing 

Genotype

Treatment

Vehicle
Prednisolone 
(30 mg/kg)

Vamorolone 
(30 mg/kg)

Controls 16 16 15

Heterozygotes 16 18 22

Homozygotes 15 17 19

Table 1.  Number of animals entering the study for each experimental group*. *Male and female mice were 
treated orally with vehicle, prednisolone, or vamorolone daily for six weeks.
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percent change from baseline with vehicle, prednisolone, and vamorolone treatments, heterozygous and homozy-
gous mice showed a significantly different pattern of effect in response to the experimental treatments.

Effect of prednisolone and vamorolone on hematologic parameters and spleen size.  Figure 2 
shows hematologic parameters measured after six-week treatment with vehicle, prednisolone, or vamorolone 
according to genotype. Similar to previous reports27–30, homozygous mice, independent of treatment, had 
increased white blood cell counts (p < 0.001, Fig. 2A) and anemia as indicated by lower red blood cell counts 
(Fig. 2D), hemoglobin, and hematocrit (data not shown, all p < 0.001) compared to control animals (Fig. 2). 
Regardless of genotype, prednisolone- and vamorolone-treated mice had significantly lower white blood cell 
counts compared with vehicle-treated animals (p < 0.001, Fig. 2A). The effects of treatment on the number of 
neutrophils varied according to genotype (p = 0.045 for the treatment*genotype interaction term). The num-
ber of neutrophils was significantly higher in homozygous mice as compared to controls (p = 0.006) and hete-
rozygous mice (p = 0.006) for all treatment groups (Fig. 2B), however no main effect of treatment was observed 
(p = 0.21). Both prednisolone (p = 0.027) and vamorolone-treatment (p < 0.001) were associated with decreased 
lymphocyte counts compared with vehicle. In addition, homozygous mice had significantly greater lymphocyte 
counts than either control (p < 0.001) or heterozygous mice (p < 0.001) independent of treatment.

There were no significant differences in red cell counts, hemoglobin, hematocrit level, or platelet counts with 
respect to treatment (p = 0.69, p = 0.11, p = 0.17, p = 0.84 respectively; Fig. 2D). Similarly, there was no effect of 
prednisolone or vamorolone on mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular 
hemoglobin concentration, or red cell distribution width, all p ≥ 0.08 (data not shown).

In SCD mice, the spleen is a site of extra medullary hematopoiesis. In keeping with our previous reports30, 
homozygous mice had significantly increased spleen-to-body weight ratio compared with heterozygotes and 
control animals (all p < 0.001) independent of treatment although the effects of treatment varied according to 
genotype (p = 0.010 for treatment*genotype interaction). Mice of all genotypes treated with prednisolone had 
significantly lower spleen to body weight ratios than vehicle treated mice (p = 0.006), however no significant 
difference was observed between vamorolone and vehicle treated mice (Fig. 2E) independent of genotype.

Figure 1.  Effect of prednisolone and vamorolone on nociception. Data are presented as means and standard 
errors of percentage changes from baseline by genotype and treatment for hot plate (A) and tail flick latencies 
(B), current thresholds in response to 2000 (C), 250 (D) or 5 Hz (E) stimulations. Hetero indicates heterozygotes 
and homo homozygotes (N = 13–18 per each of 9 treatment groups for all outcome measurements). Regardless 
of genotype and sex, six-week treatment with vehicle, prednisolone, or vamorolone yielded similar percent 
changes from baseline on hot plate and tail flick latencies and on current thresholds in response to 2000 or 5 Hz 
stimulations (all p > 0.05, A,B,C and E). Regarding 250 Hz current thresholds, the effects of prednisolone and 
vamorolone, compared with vehicle, varied according to genotype as there was a significant treatment*genotype 
interaction (p = 0.014) although neither the main effect of treatment or genotype reached statistical significance 
(p = 0.07 and p = 0.18, respectively, (D). As shown in (D), the pattern of percent change from baseline over 
treatment groups is markedly different for each genotype.
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Effect of prednisolone and vamorolone on liver function tests and malondialdehyde.  Among 
vehicle-treated mice, compared with controls, homozygotes had significantly higher plasma levels of alanine 
aminotransferase (ALT, p < 0.001), aspartate aminotransferase (AST, p = 0.001), and alkaline phosphatase 
(ALK, p < 0.001), Fig. 3. Overall, the effects of vamorolone and prednisolone on ALK, ALT, and AST were sim-
ilar (p = 0.071, p = 0.27, p = 0.40 respectively). Additionally, independent of genotype, compared with vehicle, 
vamorolone and prednisolone treatment was associated with increased ALK and AST (p = 0.018 and p = 0.042 
respectively for main treatment effect).

In order to examine levels of oxidative stress and lipid peroxidation, we measured malondialdehyde formation 
in liver homogenates. Homozygotes had higher levels of liver malondialdehyde formation compared with control 
and heterozygous mice (p < 0.001, Fig. 3D). However, in liver homogenates, there was no effect of treatment 
(prednisolone or vamorolone) compared with vehicle on malondialdehyde formation independent of genotype 
(p = 0.66)

Effect of prednisolone and vamorolone on liver histopathology.  Hepatic necrosis was observed in 
homozygotes but not in controls or heterozygotes. Hepatic necrosis was characterized by areas of patchy, often 
confluent, well-demarcated zone III (centrilobular) coagulative necrosis with admixed hemosiderin deposition 
and inflammation, Fig. 4. Pools of sickled red blood cells were readily identified within the hepatic vasculature, 
leading to congestion and occasional vascular occlusion within areas of necrosis. Some homozygous mice showed 
mild to moderate hepatic glycogenosis. When comparing the percentage of hepatic necrosis between treatments 
in homozygous mice, a significant increase in hepatic necrosis was observed in vamorolone treated homozygotes 
compared to both vehicle- (p = 0.005) and prednisolone-treated (p = 0.008) animals, Fig. 5. There was also a trend 
towards increased liver necrosis in prednisolone-treated homozygotes compared to vehicle-treated mice even 
though this increase in hepatic necrosis did not reach statistical significance (p = 0.15), Fig. 5.

Figure 2.  Effect of prednisolone and vamorolone on hematologic parameters and spleen size. Data are 
presented as means and standard errors. Hetero indicates heterozygotes and homo homozygotes (N = 13–17 per 
each of 9 treatment groups for all outcome measurements). (A) Homozygous mice, independent of treatment, 
had increased white blood cell counts p < 0.001 compared to control animals. Regardless of genotype, 
prednisolone- and vamorolone-treated mice had significantly lower white blood cell counts compared with 
vehicle-treated animals (p < 0.001). The effects of treatment on the number of neutrophils varied according 
to genotype (p = 0.045 for the treatment*genotype interaction term). (B) The number of neutrophils was 
significantly higher in homozygous mice as compared to controls (p = 0.006) and heterozygous mice (p = 0.006) 
for all treatment groups, however no main effect of treatment was observed (p = 0.21). (C) Homozygous 
mice had significantly greater lymphocytes than either control (p < 0.001) or heterozygous mice (p < 0.001) 
and both, prednisolone (p = 0.027) and vamorolone-treatment (p < 0.001) were associated with decreased 
lymphocyte counts compared with vehicle. (D) Homozygotes, independent of treatment, had lower red cell 
counts, compared to controls and heterozygotes (p < 0.001). Treatment with prednisolone and vamorolone had 
no effect on red cell counts, regardless of genotype (p = 0.69). (E) Homozygous mice had significantly increased 
spleen-to-body weight ratio compared with heterozygotes and control animals (all p < 0.001) independent of 
treatment although the effects of treatment varied according to genotype (p = 0.010 for treatment*genotype 
interaction). Mice of all genotypes treated with prednisolone had significantly lower spleen to body weight 
ratios than vehicle treated mice (p = 0.006), however no significant difference was observed between 
vamorolone and vehicle treated mice independent of genotype.
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There was also evidence of significant hepatic inflammation in homozygotes and the degree of inflammation 
varied between treatment groups. The infiltrates were composed predominantly of lymphocytes and macrophages, 
with only rare plasma cells and eosinophils. Neutrophils were found associated mainly with areas of necrosis. The 
degree of inflammation was worst in vehicle-treated homozygotes, less intense in vamorolone-treated and with 
the mildest degree seen in prednisolone-treated homozygotes, Fig. 6.

Discussion
We conducted a preclinical trial of prednisolone, a conventional corticosteroid, and of vamorolone, a novel 
dissociative corticosteroid, to determine their effects on the nociception phenotype, hematologic changes, and 
organ pathology in humanized SCD mice. Prednisolone and vamorolone had no significant effect on the noci-
ception phenotype, red cell count, or hemoglobin levels in SCD mice compared to vehicle. Conversely, both 
prednisolone and vamorolone significantly decreased white blood cell counts and the effects of vamorolone were 
milder than those of prednisolone. A similar pattern of effect was observed in liver histopathology as, while both 
vamorolone and prednisolone decreased hepatic inflammation, vamorolone attenuated hepatic inflammation 
to a lesser degree than did prednisolone. However, despite decreasing hepatic inflammation, prednisolone and 
vamorolone treatments were associated with increased hepatic necrosis in homozygotes, but not in controls and 
heterozygotes. However, while worsened hepatic necrosis was only observed in homozygotes, prednisolone and 
vamorolone were associated with significant increases in plasma levels of transaminases and alkaline phosphatase 
and no changes in liver levels of malondialdehyde formation in all genotypes. These findings suggest that the 
corticosteroids prednisolone and vamorolone, despite decreasing hepatic inflammation and not changing levels 
of lipid oxidative stress, were associated with significant hepatic toxicity in SCD mice.

The administration of corticosteroid compounds to SCD patients can be associated with a number of compli-
cations18,33. During corticosteroids administration, adverse events such as severe VOEs, hemorrhagic stroke, and 
death have been reported in SCD patients18,33. Clinicians have also reported that after completion of a course of 
corticosteroids and discontinuation of those drugs, SCD patients are at increased risk for hospital readmissions 
for VOEs12,14,15,19. While the mechanisms of these reported complications are largely unknown, results from pre-
clinical studies have led to some hypotheses34. For example, in a different mouse model of SCD, a short course of 
the corticosteroid dexamethasone was shown to inhibit the nuclear factor kappa B (NF-ĸB), a pro-inflammatory 

Figure 3.  Effect of prednisolone and vamorolone on liver function tests and malondialdehyde levels. Data 
are presented as means and standard errors of alanine aminotransferase (ALT, A), aspartate aminotransferase 
(AST, B), alkaline phosphatase (ALK, C), and malondialdehyde (D). Hetero indicates heterozygotes and homo 
homozygotes (N = 5–7 per each of 9 treatment groups for all outcome measures). Among vehicle-treated 
mice, compared with controls, homozygotes had significantly higher plasma levels of ALT (p < 0.001, A), 
AST (p = 0.001, B), and ALK (p < 0.001, C). Overall, the effects of vamorolone and prednisolone on ALK, 
ALT, and AST were similar (p = 0.071, p = 0.27, p = 0.40 respectively). Additionally, independent of genotype, 
compared with vehicle, vamorolone and prednisolone treatment was associated with increased ALK and 
AST (p = 0.018 and p = 0.042 respectively for main treatment effect). (D) Homozygotes had higher levels of 
liver malondialdehyde formation compared with control and heterozygous mice (p < 0.001). Additionally, 
independent of genotype, there was no effect of treatment on malondialdehyde formation in liver homogenates 
(p = 0.66).
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transcription factor, and to decrease the expression of the vascular cell adhesion molecule-1 (VCAM-1) and 
the intercellular adhesion molecule-1 (ICAM-1) in lungs, liver, and skin34. Those effects in turn were shown 
to prevent hypoxia/reoxygenation-related decreases in venular blood flow and vaso-occlusions and white cell/
endothelium interactions in that SCD mouse model34. Interestingly, in that same study, the discontinuation of 
dexamethasone was associated with rebound increases in adhesion molecules and endothelial activation34. While 
we did not examine the effects of corticosteroid discontinuation here, we found that in the Townes mouse, a 
different humanized SCD model, a six-week course of prednisolone, a conventional corticosteroid, and of vam-
orolone, a dissociative corticosteroid, decreased white cell counts and hepatic inflammation, thus suggesting that 
these drugs indeed decreased ongoing inflammation at varying degrees. However, these seemingly beneficial 
effects of reduced inflammation were coupled with increased transaminases and alkaline phosphatase in all gen-
otypes (control, heterozygotes, and homozygotes), and worsened hepatic necrosis in homozygotes only. These 
findings in SCD mice, may suggest the possibility that corticosteroid compounds, especially dissociative steroids, 
could be associated with significant hepatic toxicity in SCD.

It is noteworthy that, while vamorolone and prednisolone increased hepatic necrosis in homozygotes, but 
not in heterozygotes and control mice, both prednisolone and vamorolone were associated with elevations in 
transaminases and alkaline phosphatase in all genotypes. Seen as a milder complication of corticosteroid com-
pounds, hepatic cholestasis and gallstone disease are known to occur in conditions associated with increased 
production of cortisol such as in Cushing syndrome and with administration of conventional corticosteroids to 
treat inflammatory conditions in clinical settings35. In normal C57BL/6 mice, dexamethasone administration is 
associated with cholestasis, increased bile acids, and transaminase elevation. Furthermore, these effects are related 
to activation of the glucocorticoid receptor as glucocorticoid receptor antagonists, and hepatic down regulation 

Figure 4.  Effect of prednisolone and vamorolone on liver histopathology. Representative hematoxylin and 
eosin-stained sections from each genotype and respective treatment group (N = 14–20 per each of 9 treatment 
groups). In contrast to controls and heterozygotes, homozygous mice had significant hepatic necrosis (top 
row: Vehicle/Prednisolone/Vamorolone: 5x; middle row: Vehicle/Prednisolone/Vamorolone: 5x; bottom 
row; Vehicle: 10x, Prednisolone: 4x, Vamorolone: 3x). In homozygotes, hepatic necrosis was characterized by 
areas of patchy, often confluent, well-demarcated zone III (centrilobular) coagulative necrosis with admixed 
hemosiderin deposition and inflammation. Pools of sickled red blood cells were readily identified within the 
hepatic vasculature, leading to congestion and occasional occlusion within areas of necrosis.
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of receptors expression ameliorates hepatic cholestasis during corticosteroid administration35. Here we found 
that both prednisolone and vamorolone were associated with increased transaminases and alkaline phosphatase 
levels in controls, heterozygous and homozygous mice. These data suggest that, akin to conventional corticoster-
oids, dissociative corticosteroid compounds can also lead to elevation in transaminases and alkaline phosphatase 
during its administration in control and heterozygotes and homozygotes sickle cell mice. Therefore, these data 
suggest that liver function tests should be monitored during prolonged use of corticosteroid compounds, whether 
using conventional or dissociative corticosteroid drugs.

Figure 5.  Effect of prednisolone and vamorolone on quantitative hepatic necrosis. Box plots show median, 
interquartile range, whiskers show 10th and 90th percentiles and points reflect 5th and 95th percentiles of 
quantitative liver necrosis in all experimental groups according to genotype and treatment. Ve represents 
vehicle, P prednisolone, and Va vamorolone. (N = 14–20 per each of 9 treatment groups). When comparing 
the percentage of hepatic necrosis between treatments in homozygous mice, a significant increase in 
hepatic necrosis was observed in vamorolone treated homozygotes compared to both vehicle- (p = 0.005) 
and prednisolone-treated (p = 0.008) animals. There was also a trend towards increased liver necrosis in 
prednisolone-treated homozygotes compared to vehicle-treated mice even though this increase in hepatic 
necrosis did not reach statistical significance (p = 0.15).

Figure 6.  Effect of prednisolone and vamorolone on hepatic inflammation in homozygous sickle cell mice. 
Representative hematoxylin and eosin (H&E) slides from homozygotes shown in original magnification 10x 
(top row) and 20x (bottom row). N = 14–20 per each of 9 treatment groups. There was evidence of significant 
hepatic inflammation in homozygotes and the degree of inflammation varied between treatment groups. The 
infiltrates were composed predominantly of lymphocytes and macrophages, with only rare plasma cells and 
eosinophils. Neutrophils were found associated mainly with areas of necrosis. The degree of inflammation was 
worst in vehicle-treated homozygotes, less intense in vamorolone-treated and with the mildest degree seen in 
prednisolone-treated homozygotes.
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In rats, researchers have shown that chronic prednisolone treatment damages hepatocytes, producing inju-
ries characterized by hepatocellular necrosis and apoptosis36. These findings are associated with impairment of 
NF-ĸB and of inducible nitric oxide synthase responses, elevations in nitric oxide production, and elevations in 
nitrated protein in liver tissue as suggested by increases in nitrotyrosine levels36. In this investigation, we found 
that prednisolone- and vamorolone-treated homozygous SCD mice sustained significantly greater hepatic toxic-
ity than did controls or heterozygotes. It is noteworthy that in SCD, nitric oxide synthases are uncoupled, nitric 
oxide availability is decreased, and ongoing inflammation is present37. Further, we showed that during basal 
conditions (vehicle-treatment) homozygous mice have evidence of significant liver injury with signs of hepatic 
inflammation and hepatic necrosis, phenotypes that can be seen in humans with SCD38. Taken together, these 
findings suggest that in conditions where there is preexisting liver disease as well as altered nitric oxide biology 
(e.g. homozygous mice), such as in SCD, there is a possibility of increased susceptibility to corticosteroid-induced 
hepatic toxicity, and this toxicity is greater with the use of dissociative corticosteroid compounds.

Splenomegaly is one of the phenotypic characteristics of the Townes SCD mouse model and results from extra 
medullary hematopoiesis in response to anemia27–30. We found that both prednisolone and vamorolone (to a 
lesser degree) decreased relative spleen size. This effect was coupled with significant decreases in white blood cell 
counts and lymphocytes but with no significant changes in red cell counts, hemoglobin, or hematocrit. Notably, 
decreases in white cell counts, hepatic inflammation, and spleen size were milder in vamorolone-treated animals 
compared to prednisolone-treated mice. This suggests that at equipotent doses to those of the conventional corti-
costeroids, the effects of vamorolone, a dissociative corticosteroid, on hematopoiesis and organ inflammation are 
milder than those of prednisolone in SCD.

The results presented here are contrary to our hypothesis that conventional and dissociative corticosteroid 
compounds would ameliorate the nociception phenotype in SCD mice. The findings that corticosteroids did 
not alter the nociception phenotype might suggest that at least in SCD mice, inflammation might not the pri-
mary driver of the previously described hyperalgesia in those animals28,29. Further, the fact that SCD patients 
treated with corticosteroids typically suffer adverse events related to vaso-occlusion (increase hospitalization 
for pain, acute chest syndrome, strokes) might suggest that corticosteroids may alter blood rheology, a hypoth-
esis, which is worthy of testing in future studies. Further, while this preclinical study examined only one level of 
equipotent doses for prednisolone and vamorolone, which have been shown to be beneficial in mouse models of 
brain tumor and of inflammatory bowel disease23,26, it is possible that different doses could have yielded different 
results. In fact, vamorolone was shown to be well tolerated in healthy adults at doses of up to 20 mg/kg/day in 
completed phase 1 clinical trials and is in phase 2 clinical trials in patients with Duchenne muscular dystrophy 
(NCT02760264). Nevertheless, both conventional (prednisolone) and dissociative corticosteroids (vamorolone) 
were associated with significant hepatic toxicity manifested by elevations in transaminases, alkaline phosphatase, 
and increases in liver necrosis. This study describes a previously unknown manifestation of corticosteroid 
compound-associated toxicity in SCD mice and suggests that liver function tests should be monitored during 
corticosteroid therapy in SCD.

Materials and Methods
Animals.  The preclinical trial protocol was approved by the Children’s Research Institute Animal Care and 
Use Committees and all experiments were performed in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals39. In this investigation, we used Townes sickle cell disease mice27–32, which are engineered to 
express no murine α or β hemoglobin, as murine genes were knocked-out, and instead, to express human hemo-
globin as human hemoglobin genes were knocked-in31,32. All genotypes carry two alleles of the human α- (hα) 
globin gene. Control Townes (hα/hα::βA/βA) mice carry wild-type human βA genes, heterozygotes (hα/hα::βA/βS) 
carry one allele of the wild-type human hemoglobin beta (βA) gene and one of the sickle hemoglobin beta (βS), 
and homozygotes (hα/hα::βS/βS) carry two alleles of βS. All animals were genotyped as previously described27. 
Homozygous Townes have been shown to recapitulate the altered nociception phenotype, hematologic abnormal-
ities, and organ dysfunction of human SCD27–30.

Preclinical trial.  We examined the effects of conventional (prednisolone) and of dissociative (vamorolone) 
corticosteroid compounds compared with vehicle on the nocifensive behavior phenotype, hematologic profile, 
and organ dysfunction in heterozygotes, homozygotes, and control Townes SCD mice. A balanced number of 
age-matched (8–12 weeks) male and female mice from each of the three genotypes were treated daily with vam-
orolone, prednisolone, or vehicle (cherry syrup) (ReveraGen BioPharma, Rockville, MD) for six weeks. Behavior 
outcome measurements were obtained before and after completion of six weeks of treatment while animals were 
receiving the experimental drugs, whereas all other outcome measurements were obtained after treatment only. 
Investigators who treated animals daily, measured behavior outcomes, and procured organs, were blinded to 
animals’ genotype and treatment assignments. In this preclinical trial, there were 9 treatment groups including all 
three genotypes (control, heterozygotes, and homozygotes) and all three experimental drugs (vehicle, predniso-
lone, or vamorolone). In order to avoid potential confounding effects related to drug preparation or investigator 
administering drugs, at any given week there were animals from all treatment groups

Experimental therapies: vamorolone, prednisolone, and vehicle.  All treatment drugs were sup-
plied by ReveraGen and were administered daily at doses of 30 mg/kg for vamorolone and prednisolone sus-
pended in cherry syrup (vehicle). All drugs were administered at a volume of 10 µl per g body weight orally while 
animals were gently held and given syrup drops using a micropipette. Vamorolone and prednisolone doses were 
selected based on previous preclinical studies of vamorolone showing potent anti-inflammatory effects23,26.
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Behavior Studies.  In order to minimize variability, behavior assays were conducted by the same investigator 
between 9 AM and 2 PM and at any given week, included animals from all experimental groups. We examined 
nocifensive behavior in response to “phasic pain”40 using thermal (hotplate and tail flick latencies) and electrical 
stimuli (sensory fiber interrogation)40. Only one of each behavior testing paradigm was conducted per day and 
the investigator conducting quantitative sensory testing was unaware of the animals’ genotype and treatment.

Nocifensive response to thermal stimulation.  To evaluate nocifensive response to noxious heat, mice 
were placed on a hotplate (Harvard Apparatus, Holliston, MA) and time to display pain-avoiding behaviors 
(jumping, stomping or repeated lifting or licking of hind or front paws) was measured40. The hotplate temperature 
was set (55 °C) in accordance with previous studies of SCD28–30. Animals were allowed to stay on the hotplate for 
a maximum of 30 seconds to avoid injury.

Tail-flick latency.  Mice were gently held in a mouse holder and the middle third of the tail was placed over 
a radiant heat source (Ugo Basile, Varese, Italy) with infrared intensity set at 20%. Latency to withdraw from the 
heat source (tail flick) was measured to the nearest 0.1 s. Withdrawal of the tail stopped the stimulus, latency to 
tail flick was recorded automatically, and the cut-off time was set at 15 s. The overall tail flick latency was an aver-
age of three measurements obtained at least 1 min apart40.

Nocifensive response and nerve fiber interrogation using sine wave electrical stimulation.  In 
order to evaluate specific somatosensory fibers, we used a sine-wave electrical stimulation paradigm using three 
frequencies: 5, 250 and 2000 Hz, which preferentially stimulate C, Aδ, and Aβ fibers respectively as previously 
described41–43. Briefly, electrical stimuli generated by a neurostimulator (Neurotron, Inc, Baltimore, MD) were 
delivered to the tail of gently restrained mice. Stimuli at different frequencies (5, 250 and 2000 Hz) were delivered 
at increasing intensities, lasted one second and were set on a 50% duty cycle (each 1 s stimulus is followed by a 
one-second stimulus-free interval). Between stimulations at different frequencies, animals rested for one-minute. 
The nocifensive behavior outcome was vocalization and its occurrence prompted termination of the stimulus. 
For each frequency, the electrical stimulus amperage that elicited audible vocalization or the maximum amperage 
delivered was defined as the current threshold42–44. Current thresholds for each frequency were the average of five 
consecutive measurements obtained in response to 2000, 250, and 5 Hz sequentially. The current threshold unit 
of measurement is “unit” (U), which corresponds to 100 times the amperage that elicited audible vocalization.

Hematologic and biochemical parameters.  Blood was collected from anesthetized animals via cardiac 
puncture into heparin-coated syringes. Complete blood cell counts were performed using the Hemavet blood 
counter (Drew Scientific, Dallas, TX) as previously described27,30. After complete blood count, plasma was iso-
lated and frozen until measurement of alkaline phosphatase (ALK), alanine aminotransferase (ALT), and aspar-
tate aminotransferase (AST) in our clinical laboratory. We also measured malondialdehyde formation in liver 
homogenates, a measure of free radical oxidation of polyunsaturated fatty acids, using the thiobarbituric acid 
reactive substance (TBARS) fluorometric assay kit (BioAssay Systems, Hayward, CA) following the manufactur-
er’s protocol45.

Histopathology.  Following anesthesia and exsanguination, liver samples were collected and fixed in 10% 
buffered formalin for histological evaluation. Samples from all surviving animals were embedded in paraffin and 
5 µm sections were stained with hematoxylin and eosin (H&E). Slides were digitally scanned using an Aperio XT 
scanner and reviewed using Aperio ImageScope software. The “pen” tool of the ImageScope software was used 
to designate regions of interest (ROI), and subsequently used to determine the percentage of liver necrosis. An 
investigator blinded to genotype and treatment assignments annotated the images by outlining the necrotic areas 
and the total area of tissue on each slide. ImageScope software generated measurements for the area of outlined 
tissue in µm2 and the total percentage of liver necrosis per animal was calculated.

Statistical analysis.  All outcomes evaluated here were continuous, quantitative traits and were assessed for 
normality using both a Shapiro-Wilk normality test and visual inspection of histograms.

Several data transformations were used on those outcomes that were not normally distributed. Once trans-
formation was applied, normality was verified. Three different data transformations were used here, log, square 
root, and cubic as appropriate for the outcome. Specifically, a log transformation was applied to the number of 
white and red blood cells, mean corpuscular volume and mean corpuscular volume. A square root transformation 
was applied to the number of neutrophils and lymphocytes and to the red cell distribution width. Lastly, a cubic 
transformation was applied to hemoglobin and hematocrit values.

Comparisons of all outcomes except hepatic necrosis were performed using ANCOVA models with main 
effects of treatment group and genotype and a treatment*genotype interaction term. Sex was included as a covar-
iate in all models. For nociception outcomes we used the percent change from baseline as the dependent variable 
and included an additional covariate of baseline value. Where ANCOVA models showed a statistically significant 
main effect of treatment and/or genotype, post-hoc comparisons between levels of treatment and/or genotype 
were performed and resulting p-value adjusted for multiple comparisons using the Sidak method.

Comparisons of hepatic necrosis used different statistical method due to all control and heterozygote mice 
having no evidence of necrosis. Homozygous mice were compared to control mice, within each treatment group, 
using a Wilcoxon rank-sum test for non-normally distributed data. Homozygous mice were not specifically com-
pared to heterozygous mice as this comparison was unnecessary given both the control and heterozygous mice 
showing no necrosis. In addition, levels of hepatic necrosis were compared among the three treatment groups in 
the homozygous mice only, again using a Wilcoxon rank-sum test.
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All analyses were performed using Stata V15 (College Station, TX). The significance level of each test was set at 
0.05 and no adjustments for multiple testing of multiple outcomes were performed. The datasets generated during 
and/or analyzed during the current study are available from the corresponding author on reasonable request.
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