573 research outputs found

    An analysis of the practical DPG method

    Full text link
    In this work we give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree pp on each mesh element. Earlier works showed that there is a "trial-to-test" operator TT, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator TT is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply TT. In practical computations, TT is approximated using polynomials of some degree r>pr > p on each mesh element. We show that this approximation maintains optimal convergence rates, provided that r≥p+Nr\ge p+N, where NN is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included.Comment: Mathematics of Computation, 201

    Partial expansion of a Lipschitz domain and some applications

    Get PDF
    We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated

    A first order system least squares method for the Helmholtz equation

    Full text link
    We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results
    • …
    corecore