101 research outputs found

    The enhanced soliton propagation and energy transfer in the coupled drift wave and energetic-particle-induced geodesic acoustic mode system

    Full text link
    The evolution of the coupled drift wave (DW) and energetic-particle-induced geodesic acoustic mode (EGAM) nonlinear system is investigated using the fully nonlinear coupled DW-EGAM two-field equations, with emphasis on the turbulence spreading in the form of soliton and the nonlinear energy transfer between DW and EGAM. Four scenarios with different combinations of EGAM initial amplitudes and linear EGAM growth rates are designed to delineate the effects of linear EGAM drive and finite EGAM amplitude on DW nonlinear dynamic evolution. In presence of the linear EPs drive, the soliton propagation is enhanced, due to the generation of small radial scale structures. Two conservation laws of the nonlinear system are derived, including the energy conservation law. It is found that the energy of DW always decreases and that of EGAM always increases, leading to regulation of DW by EGAM.Comment: 19 figures, 9 page

    On-Site Quantification and Infection Risk Assessment of Airborne SARS-CoV-2 Virus Via a Nanoplasmonic Bioaerosol Sensing System in Healthcare Settings

    Full text link
    On-site quantification and early-stage infection risk assessment of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high spatiotemporal resolution is a promising approach for mitigating the spread of coronavirus disease 2019 (COVID-19) pandemic and informing life-saving decisions. Here, a condensation (hygroscopic growth)-assisted bioaerosol collection and plasmonic photothermal sensing (CAPS) system for on-site quantitative risk analysis of SARS-CoV-2 virus-laden aerosols is presented. The CAPS system provided rapid thermoplasmonic biosensing results after an aerosol-to-hydrosol sampling process in COVID-19-related environments including a hospital and a nursing home. The detection limit reached 0.25 copies/µL in the complex aerosol background without further purification. More importantly, the CAPS system enabled direct measurement of the SARS-CoV-2 virus exposures with high spatiotemporal resolution. Measurement and feedback of the results to healthcare workers and patients via a QR-code are completed within two hours. Based on a dose-responseµ model, it is used the plasmonic biosensing signal to calculate probabilities of SARS-CoV-2 infection risk and estimate maximum exposure durations to an acceptable risk threshold in different environmental settings

    Design, synthesis, and biological evaluation of NAD(P)H: quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation

    Get PDF
    The enzyme NQO1 is a potential target for selective cancer therapy due to its overexpression in certain hypoxic tumors. A series of prodrugs possessing a variety of cytotoxic diterpenoids (oridonin and its analogues) as the leaving groups activated by NQO1 were synthesized by functionalization of 3-(hydroxymethyl)indolequinone, which is a good substrate of NQO1. The target compounds (29a-m) exhibited relatively higher antiproliferative activities against NQO1-rich human colon carcinoma cells (HT-29) and human lung carcinoma (A549) cells (IC50 ¼ 0.263e2.904 mM), while NQO1-defficient lung adenosquamous carcinoma cells (H596) were less sensitive to these compounds, among which, compound 29h exhibited the most potent antiproliferative activity against both A549 and HT-29 cells, with IC50 values of 0.386 and 0.263 mM, respectively. Further HPLC and docking studies demonstrated that 29h is a good substrate of NQO1. Moreover, the investigation of anticancer mechanism showed that the representative compound 29h affected cell cycle and induced NQO1 dependent apoptosis through an oxidative stress triggered mitochondria-related pathway in A549 cells. Besides, the antitumor activity of 29h was also verified in a liver cancer xenograft mouse model. Biological evaluation of these compounds concludes that there is a strong correlation between NQO1 enzyme and induction of cancer cell death. Thus, this suggests that some of the target compounds activated by NQO1 are novel prodrug candidates potential for selective anticancer therapy

    Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice

    Get PDF
    AIMS: Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated ageing syndrome associated with premature vascular disease and death due to heart attack and stroke. In HGPS a mutation in lamin A (progerin) alters nuclear morphology and gene expression. Current therapy increases the lifespan of these children only modestly. Thus, greater understanding of the underlying mechanisms of HGPS is required to improve therapy. Endothelial cells (ECs) differentiated from induced pluripotent stem cells (iPSCs) derived from these patients exhibit hallmarks of senescence including replication arrest, increased expression of inflammatory markers, DNA damage, and telomere erosion. We hypothesized that correction of shortened telomeres may reverse these measures of vascular ageing. METHODS AND RESULTS: We generated ECs from iPSCs belonging to children with HGPS and their unaffected parents. Telomerase mRNA (hTERT) was used to treat HGPS ECs. Endothelial morphology and functions were assessed, as well as proteomic and transcriptional profiles with attention to inflammatory markers, DNA damage, and EC identity genes. In a mouse model of HGPS, we assessed the effects of lentiviral transfection of mTERT on measures of senescence, focusing on the EC phenotype in various organs. hTERT treatment of human HGPS ECs improved replicative capacity; restored endothelial functions such as nitric oxide generation, acetylated low-density lipoprotein uptake and angiogenesis; and reduced the elaboration of inflammatory cytokines. In addition, hTERT treatment improved cellular and nuclear morphology, in association with a normalization of the transcriptional profile, effects that may be mediated in part by a reduction in progerin expression and an increase in sirtuin 1 (SIRT1). Progeria mice treated with mTERT lentivirus manifested similar improvements, with a reduction in inflammatory and DNA damage markers and increased SIRT1 in their vasculature and other organs. Furthermore, mTERT therapy increased the lifespan of HGPS mice. CONCLUSION: Vascular rejuvenation using telomerase mRNA is a promising approach for progeria and other age-related diseases

    Comparative analysis of prevention and control measures toward COVID-19 epidemic between Shanghai and Beijing

    Get PDF
    PurposeBy serving and providing a guide for other regional places, this study aims to advance and guide the epidemic prevention and control methods, and practices and strengthen people’s ability to respond to COVID-19 and other future potential public health risks.Design/methodology/approachA comparative analysis was conducted that the COVID-19 epidemic development trend and prevention and control effects both in Beijing and Shanghai. In fact, regarding the COVID-19 policy and strategic areas, the differences between governmental, social, and professional management were discussed and explored. To prevent and be ready for potential pandemics, experience and knowledge were used and summarized.FindingsThe strong attack of the Omicron variant in early 2022 has posed challenges to epidemic prevention and control practices in many Chinese cities. Shanghai, which had achieved relatively good performance in the fight against the epidemic, has exposed limitations in its epidemic prevention and control system in the face of Omicron. In fact, the city of Beijing has undertaken prompt and severe lockdown measures and achieved rather good results in epidemic prevention and control because of learning from Shanghai’s experience and lessons; adhering to the overall concept of “dynamic clearing,” implementing precise prevention and monitoring, enhancing community control, and making emergency plans and preparations. All these actions and measures are still essential in the shift from pandemic response to pandemic control.Research limitations/implicationsDifferent places have introduced different urgent policies to control the spread of the pandemic. Strategies to control COVID-19 have often been based on preliminary and limited data and have tended to be slow to evolve as new evidence emerges. Hence, the effects of these anti-epidemic policies need to be further tested

    Acute Effects of Microcystins on the Transcription of 14 Glutathione S-Transferase Isoforms in Wistar Rat

    Get PDF
    ABSTRACT: The glutathione S-transferases (GST) play important roles in the detoxification of microcystins (MCs). For better understanding of the responses of GST isforms to MCs exposure, informations about the effects of MCs on GSTs are necessary. In this experiment, we cloned the full length cDNA of 14 GST isoforms (GST alpha, kappa, mu, omega, pi, theta, zeta, and microsomal GST) from Wistar rat. The mRNA abundance of each rat GST isoform in the liver, kidney, and testis was analyzed by real time quantitative PCR. Multiple GST isoforms were constitutively expressed in all examined organs, but some isoforms were expressed at higher level in one organ than in others. The relative changes of the mRNA abundance in the liver, kidney, and testis of Wiatar rat i.v. injected with crude MCs extract at dose of 1LD 50 were also analyzed. Generally, the expression of most GSTs in the liver and testis was suppressed while that in kidney was induced after being injected with MCs. It is suggested that the transcription of GST isoforms varied in different ways within an organ and between organs of Wistar rat exposed to MCs. # 2009 Wiley Periodicals, Inc. Environ Toxicol 26: 187-194, 2011

    Transcriptional alteration of cytoskeletal genes induced by microcystins in three organs of rats

    Get PDF
    This study explored the mechanisms of toxicity of microcystins by measuring the transcription levels of nine cytoskeletal genes (actin, tubulin, vimentin, ezrin, radixin, moesin, MAP1b, tau, stathmin) in the liver, kidney and spleen of male Wistar rats treated with microcystins at a dose of 80 mu g MC-LReq kg(-1) bw. Microcystins disrupted the transcriptional homeostasis of cytoskeletal genes in these organs. Changes in the transcription of four genes (beta-actin, ezrin, radixin and tau) in liver, one gene (stathmin) in kidney, and one gene (radixin) in spleen were significantly correlated with the tissue concentration of microcystins. However, the influences on the transcription of most genes we studied were greater in the liver than in the kidney or spleen. The effects of microcystins on the transcription of cytoskeletal genes may explain some of the morphological and pathological changes observed in these organs and provide new information on the hepatotoxicity of these compounds. Additionally, transcriptional changes in tumor-associated cytoskeletal genes (ezrin, moesin and stathmin) that were observed in the present study provide a possible clue to the tumor-promoting potential of microcystins and their influences on the transcription of MAP1b and tau imply possible neurological toxicity of microcystins in vertebrates. (C) 2010 Published by Elsevier Ltd

    Recent Development of Optofluidics for Imaging and Sensing Applications

    No full text
    Optofluidics represents the interaction of light and fluids on a chip that integrates microfluidics and optics, which provides a promising optical platform for manipulating and analyzing fluid samples. Recent years have witnessed a substantial growth in optofluidic devices, including the integration of optical and fluidic control units, the incorporation of diverse photonic nanostructures, and new applications. All these advancements have enabled the implementation of optofluidics with improved performance. In this review, the recent advances of fabrication techniques and cutting-edge applications of optofluidic devices are presented, with a special focus on the developments of imaging and sensing. Specifically, the optofluidic based imaging techniques and applications are summarized, including the high-throughput cytometry, biochemical analysis, and optofluidic nanoparticle manipulation. The optofluidic sensing section is categorized according to the modulation approaches and the transduction mechanisms, represented by absorption, reflection/refraction, scattering, and plasmonics. Perspectives on future developments and promising avenues in the fields of optofluidics are also provided

    Recent Development of Optofluidics for Imaging and Sensing Applications

    No full text
    Optofluidics represents the interaction of light and fluids on a chip that integrates microfluidics and optics, which provides a promising optical platform for manipulating and analyzing fluid samples. Recent years have witnessed a substantial growth in optofluidic devices, including the integration of optical and fluidic control units, the incorporation of diverse photonic nanostructures, and new applications. All these advancements have enabled the implementation of optofluidics with improved performance. In this review, the recent advances of fabrication techniques and cutting-edge applications of optofluidic devices are presented, with a special focus on the developments of imaging and sensing. Specifically, the optofluidic based imaging techniques and applications are summarized, including the high-throughput cytometry, biochemical analysis, and optofluidic nanoparticle manipulation. The optofluidic sensing section is categorized according to the modulation approaches and the transduction mechanisms, represented by absorption, reflection/refraction, scattering, and plasmonics. Perspectives on future developments and promising avenues in the fields of optofluidics are also provided
    corecore