8 research outputs found

    Syntheses, Structures, Photochemical and Magnetic Properties of Novel Divalent Cd/Mn Coordination Polymers Based on a Semirigid Tripodal Carboxylate Ligand

    No full text
    The reactions of a semirigid tripodal carboxylic ligand, 3,5-bi­(4-carboxy-phenoxy)-benzoic acid (H<sub>3</sub>BCPBA) with Cd­(NO<sub>3</sub>)<sub>2</sub>/Mn­(NO<sub>3</sub>)<sub>2</sub> afford five novel complexes, {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>·(DMA)<sub>2</sub>­·(H<sub>2</sub>O)<sub>5</sub>]·7H<sub>2</sub>O·2DMA}<sub><i>n</i></sub> (<b>1</b>), {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>(L<sup>1</sup>)­(H<sub>2</sub>O)<sub>6</sub>]·(L<sup>1</sup>)}<sub><i>n</i></sub> (L<sup>1</sup> = 4-[(E)-4-pyridinylazo]­pyridine) (<b>2</b>), {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>(L<sup>2</sup>)­·(H<sub>2</sub>O)<sub>3</sub>(DMF)<sub>2</sub>]·2DMF}<sub><i>n</i></sub> (L<sup>2</sup> = 1,3-bis­(4-pyridyl)­propane) (<b>3</b>), {[Mn<sub>3</sub>(BCPBA)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]·11H<sub>2</sub>O}<sub><i>n</i></sub> (<b>4</b>), {[Mn<sub>3</sub>(BCPBA)<sub>2</sub>(DMF)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]­·2DMF·9H<sub>2</sub>O}<sub><i>n</i></sub> (<b>5</b>) in the presence or absence of an auxiliary ligand. Compound <b>1</b> is a three-dimensional (3D) structure with 3,4-connected net structure. Compound <b>2</b> possesses 3D networks with two 3D → 3D interpenetration frameworks. Compound <b>3</b> is a 3D sheet structure with a decorated tfz-d topology. Compound <b>4</b> is a 3D structure which consists of a two-dimensional (2D) Mn honeycomb net with six infinite Mn rings and BCPBA<sup>3–</sup> ligands. Compound <b>5</b> is also a 3D structure, while its 2D Mn honeycomb net with eight infinite Mn rings is different from that of compound <b>4</b>. The photochemical property of <b>1</b>–<b>3</b> is performed in the solid state at room temperature. Magnetic susceptibility measurements indicate that compounds <b>4</b> and <b>5</b> exhibit antiferromagnetic coupling between adjacent Mn­(II) ions

    Three 2D/2D → 2D or 3D Coordination Polymers: Parallel Stacked, Interpenetration, and Polycatenated

    No full text
    Three fascinating coordination polymers, {[Zn<sub>2</sub>(TPPBDA)­(HCO<sub>2</sub><sup>–</sup>)<sub>4</sub>]·2H<sub>2</sub>O}<sub><i>n</i></sub> (<b>1</b>), {[Zn­(TPPBDA)<sub>1/2</sub>(4,4′-sdb)]·2H<sub>2</sub>O }<sub><i>n</i></sub> (<b>2</b>), and {[Zn­(TPPBDA)<sub>1/2</sub>(oba)·2DMF·2H<sub>2</sub>O]}<sub><i>n</i></sub> (<b>3</b>), have been successfully synthesized and characterized by the self-assembly of the TPPDBA ligand as well as Zn<sup>2+</sup> metal salts, or in the presence of carboxylate ligands (TPPDBA = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetrakis­(4-(4-pyridine)-phenyl) biphenyl-4,4′-diamine), 4,4′-H<sub>2</sub>sdb = 4,4′-sulfonyldibenzoate, 4,4′-H<sub>2</sub>oba = 4,4′-oxybis­(benzoate), DMF = <i>N</i>,<i>N</i>-dimethylformamide). In complex <b>1</b>, the 2D ABAB parallel stacked network in which left- and right-handed helical chains coexist and array alternately (2D<sub>chiral</sub>/2D<sub>chiral</sub> → 2D<sub>achiral</sub>) makes <b>1</b> give rise to a new interesting 2D interwoven network. Complex <b>2</b> exhibits a 2D + 2D → 2D parallel interpenetrated network. For compound <b>3</b>, the polycatenation among the 2D layer further extends the 2D net into a 3D framework

    Syntheses, Structures, Photochemical and Magnetic Properties of Novel Divalent Cd/Mn Coordination Polymers Based on a Semirigid Tripodal Carboxylate Ligand

    No full text
    The reactions of a semirigid tripodal carboxylic ligand, 3,5-bi­(4-carboxy-phenoxy)-benzoic acid (H<sub>3</sub>BCPBA) with Cd­(NO<sub>3</sub>)<sub>2</sub>/Mn­(NO<sub>3</sub>)<sub>2</sub> afford five novel complexes, {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>·(DMA)<sub>2</sub>­·(H<sub>2</sub>O)<sub>5</sub>]·7H<sub>2</sub>O·2DMA}<sub><i>n</i></sub> (<b>1</b>), {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>(L<sup>1</sup>)­(H<sub>2</sub>O)<sub>6</sub>]·(L<sup>1</sup>)}<sub><i>n</i></sub> (L<sup>1</sup> = 4-[(E)-4-pyridinylazo]­pyridine) (<b>2</b>), {[Cd<sub>3</sub>(BCPBA)<sub>2</sub>(L<sup>2</sup>)­·(H<sub>2</sub>O)<sub>3</sub>(DMF)<sub>2</sub>]·2DMF}<sub><i>n</i></sub> (L<sup>2</sup> = 1,3-bis­(4-pyridyl)­propane) (<b>3</b>), {[Mn<sub>3</sub>(BCPBA)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]·11H<sub>2</sub>O}<sub><i>n</i></sub> (<b>4</b>), {[Mn<sub>3</sub>(BCPBA)<sub>2</sub>(DMF)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]­·2DMF·9H<sub>2</sub>O}<sub><i>n</i></sub> (<b>5</b>) in the presence or absence of an auxiliary ligand. Compound <b>1</b> is a three-dimensional (3D) structure with 3,4-connected net structure. Compound <b>2</b> possesses 3D networks with two 3D → 3D interpenetration frameworks. Compound <b>3</b> is a 3D sheet structure with a decorated tfz-d topology. Compound <b>4</b> is a 3D structure which consists of a two-dimensional (2D) Mn honeycomb net with six infinite Mn rings and BCPBA<sup>3–</sup> ligands. Compound <b>5</b> is also a 3D structure, while its 2D Mn honeycomb net with eight infinite Mn rings is different from that of compound <b>4</b>. The photochemical property of <b>1</b>–<b>3</b> is performed in the solid state at room temperature. Magnetic susceptibility measurements indicate that compounds <b>4</b> and <b>5</b> exhibit antiferromagnetic coupling between adjacent Mn­(II) ions

    An Unprecedented Homochiral Metal–Organic Framework Based on Achiral Nanosized Pyridine and V‑Shaped Polycarboxylate Acid Ligand

    No full text
    A unique homochiral metal–organic framework has been successfully synthesized by solvothermal reaction of an achiral flexible V-shaped ligand and a nanosized π-electron-deficient pyridine ligand based on cobalt­(II) salt, [Co­(L)­(DPNDI)<sub>0.5</sub>]<sub><i>n</i></sub> (<b>1</b>) (H<sub>2</sub>L = 4,4′-dicarboxydiphenylamine, DPNDI = <i>N</i>,<i>N</i>′-di-(4-pyridyl)-1,4,5,8-naphthalenediimide); the helixes assembled by H<sub>2</sub>L and cobalt­(II) paddle-wheel centers are left-handed and transform the framework to chiral. Also, the inserting of the DPNDI transforms the original <b>dia</b> net constructed by H<sub>2</sub>L and cobalt­(II) paddle-wheel centers to a 3-fold <b>jsm</b> net. This is the first example of interpenetrated <b>jsm</b> net. In addition, the chiral property of bulk products is confirmed by circular dichroism spectra (CD), and the thermal stability and the magnetic properties are also investigated

    An Unprecedented Homochiral Metal–Organic Framework Based on Achiral Nanosized Pyridine and V‑Shaped Polycarboxylate Acid Ligand

    No full text
    A unique homochiral metal–organic framework has been successfully synthesized by solvothermal reaction of an achiral flexible V-shaped ligand and a nanosized π-electron-deficient pyridine ligand based on cobalt­(II) salt, [Co­(L)­(DPNDI)<sub>0.5</sub>]<sub><i>n</i></sub> (<b>1</b>) (H<sub>2</sub>L = 4,4′-dicarboxydiphenylamine, DPNDI = <i>N</i>,<i>N</i>′-di-(4-pyridyl)-1,4,5,8-naphthalenediimide); the helixes assembled by H<sub>2</sub>L and cobalt­(II) paddle-wheel centers are left-handed and transform the framework to chiral. Also, the inserting of the DPNDI transforms the original <b>dia</b> net constructed by H<sub>2</sub>L and cobalt­(II) paddle-wheel centers to a 3-fold <b>jsm</b> net. This is the first example of interpenetrated <b>jsm</b> net. In addition, the chiral property of bulk products is confirmed by circular dichroism spectra (CD), and the thermal stability and the magnetic properties are also investigated

    Cyclopentaneteracarboxylic Metal–Organic Frameworks: Tuning the Distance between Layers and Pore Structures with N‑Ligands

    No full text
    Five new isomorphic coordination polymers of the Co­(II) ion, namely, {[Co<sub>2</sub>L­(bpy)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]·2H<sub>2</sub>O}<sub><i>n</i></sub> (<b>1</b>), {[Co<sub>2</sub>L­(pbyb)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]·3H<sub>2</sub>O}<i><sub>n</sub></i> (<b>2</b>), {[Co<sub>2</sub>L­(dpe)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]·2H<sub>2</sub>O}<sub><i>n</i></sub> (<b>3</b>), {[Co<sub>2</sub>L­(dpa)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]·2.5H<sub>2</sub>O}<sub><i>n</i></sub> (<b>4</b>), and {[Co<sub>2</sub>L­(dip)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]·3.5H<sub>2</sub>O}<sub><i>n</i></sub> (<b>5</b>) (H<sub>4</sub>L = <i>cis</i>,<i>cis</i>,<i>cis</i>,<i>cis</i>-1,2,3,4-cyclopentaneteracarboxylic acid, bpy = 4,4′-bipyridine, pbyb = 1,4-di­(pyridine-4-yl)­benzene, dpe = 1,2-di­(pyridine-4-yl)­ethane, dpa = (<i>E</i>)-1,2-di­(pyridin-4-yl)­diazene, and dip = 1,4-di­(1<i>H</i>-imidazol-1-yl)­benzene), have been synthesized under hydrothermal conditions. The L<sup>4–</sup> ligand maintains its original conformation of <i>SSRR</i> in all of these compounds, but {Co<sub>5</sub>L}<i><sub>n</sub></i> clusters show mirror coordination symmetry in <b>1</b>, <b>2</b>, and <b>4</b> while the clusters in <b>3</b> and <b>5</b> do not. The addition of different N-ligands can tune the distance between {Co<sub>2</sub>L}<sub><i>n</i></sub> layers and change the pore structures of the frameworks. Magnetic susceptibility measurements indicate that <b>1</b>–<b>5</b> exhibit antiferromagnetic behavior

    Tuning Structural Topologies of a Series of Metal–Organic Frameworks: Different Bent Dicarboxylates

    No full text
    Five new metal–organic frameworks incorporating the angular tetratopic ligand with different transition metal ions and bent coligands have been synthesized: [Zn<sub>4</sub>(L)<sub>2</sub>(4,4′-sdb)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]·3H<sub>2</sub>O (<b>1</b>), [Zn<sub>2</sub>(L)<sub>2</sub>(hfipbb)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>] (<b>2</b>), [Zn­(L)­(oba)]·H<sub>2</sub>O (<b>3</b>), [Cd<sub>2</sub>(L)<sub>2</sub>(4,4′-sdb)<sub>2</sub>]·2H<sub>2</sub>O (<b>4</b>), [Cd<sub>2</sub>(L)­(hfipbb)­(H<sub>2</sub>O)<sub>3</sub>]·2H<sub>2</sub>O (<b>5</b>), [L = 1,1′-oxybis­[3,5-dipyridine-benzene, 4,4′-H<sub>2</sub>sdb = 4,4′-sulfonyldibenzoate, H<sub>2</sub>hfipbb = 4,4′-(hexafluoroisopropylidene)­bis­(benzoic acid), H<sub>2</sub>oba = 4,4′-oxybis­(benzoate)]. Structural analysis reveals that the mixed ligands display versatile coordination modes to manage the metal ions to form homochiral, inclined polycatenation (1D → 2D), 3-fold interpenetrating nets. However, the different coordinated modes, geometry, and flexibility of ligands around metal ions result in subtle differences in the final architecture. Bulk materials for <b>1</b> and <b>3</b> have a second-harmonic generation activity, approximately 0.4 and 0.8 times that of urea

    Metal–Organic Frameworks Based on Flexible V-Shaped Polycarboxylate Acids: Hydrogen Bondings, Non-Interpenetrated and Polycatenated

    No full text
    Solvothermal reactions of 4,4′-dicarboxydiphenylamine (H<sub>2</sub>L) with 4,4′-bis­(imidazol-1-yl)­phenyl (BIP) and 4,4′-bis­(imidazol-1-yl)­diphenyl (BIBP) in the presence of cobalt­(II), cadmium­(II), zinc­(II) salts in H<sub>2</sub>O/CH<sub>3</sub>CN or H<sub>2</sub>O/DMF produced five new complexes, namely, [Co<sub>2</sub>(L)<sub>2</sub>(BIP)<sub>2</sub>·3H<sub>2</sub>O]<sub><i>n</i></sub> (<b>1</b>), [Co­(L)­(BIP)·2CH<sub>3</sub>CN]<sub><i>n</i></sub> (<b>2</b>), [Co­(L)­(BIBP)·H<sub>2</sub>O]<sub><i>n</i></sub> (<b>3</b>), [Cd­(L)­(BIBP)]<sub><i>n</i></sub> (<b>4</b>), [Zn­(L)­(BIBP)]<sub><i>n</i></sub> (<b>5</b>). Compound <b>1</b> has binuclear Co­(II) clusters, which are linked by L<sup>2–</sup> and BIP to generate a rare three-dimensional (3D) non-interpenetrated <b>cds</b>-type framework, and displays ferromagnetic character. Compound <b>2</b> possesses unusual 3-fold 2D → 2D polycatenation of (4, 4) nets. Compound <b>3</b> reveals a (4, 4) grid topology with very strong hydrogen bondings due to the abundant uncoordinated carboxyl groups, which load in the structure like a freely dangling arm. Compound <b>3</b> also displays weak ferromagnetic character. Compounds <b>4</b> and <b>5</b> are isomorphic. H<sub>2</sub>L and BIBP ligands in <b>4</b> and <b>5</b> interact with a metal center to form wave-like 2D sheets. In addition, the thermal stabilities and photochemical properties of compounds have been studied
    corecore