31 research outputs found

    Dual-Modal Attention-Enhanced Text-Video Retrieval with Triplet Partial Margin Contrastive Learning

    Full text link
    In recent years, the explosion of web videos makes text-video retrieval increasingly essential and popular for video filtering, recommendation, and search. Text-video retrieval aims to rank relevant text/video higher than irrelevant ones. The core of this task is to precisely measure the cross-modal similarity between texts and videos. Recently, contrastive learning methods have shown promising results for text-video retrieval, most of which focus on the construction of positive and negative pairs to learn text and video representations. Nevertheless, they do not pay enough attention to hard negative pairs and lack the ability to model different levels of semantic similarity. To address these two issues, this paper improves contrastive learning using two novel techniques. First, to exploit hard examples for robust discriminative power, we propose a novel Dual-Modal Attention-Enhanced Module (DMAE) to mine hard negative pairs from textual and visual clues. By further introducing a Negative-aware InfoNCE (NegNCE) loss, we are able to adaptively identify all these hard negatives and explicitly highlight their impacts in the training loss. Second, our work argues that triplet samples can better model fine-grained semantic similarity compared to pairwise samples. We thereby present a new Triplet Partial Margin Contrastive Learning (TPM-CL) module to construct partial order triplet samples by automatically generating fine-grained hard negatives for matched text-video pairs. The proposed TPM-CL designs an adaptive token masking strategy with cross-modal interaction to model subtle semantic differences. Extensive experiments demonstrate that the proposed approach outperforms existing methods on four widely-used text-video retrieval datasets, including MSR-VTT, MSVD, DiDeMo and ActivityNet.Comment: Accepted by ACM MM 202

    Monasone Naphthoquinone Biosynthesis and Resistance in Monascus Fungi

    No full text
    The genes for Monascus naphthoquinone (monasone) biosynthesis are embedded in and form a composite supercluster with the Monascus azaphilone pigment biosynthetic gene cluster. Early biosynthetic intermediates are shared by the two pathways. Some enzymes encoded by the supercluster play double duty in contributing to both pathways, while others are specific for one or the other pathway. The monasone subcluster is independently regulated and inducible by elicitation with competing microorganisms. This study illustrates genomic and biosynthetic parsimony in fungi and proposes a potential path for the evolution of the mosaic-like azaphilone-naphthoquinone supercluster. The monasone subcluster also encodes a two-tiered self-resistance mechanism that models resistance determinants that may transfer to target microorganisms or emerge in cancer cells in case of naphthoquinone-type cytotoxic agents.Despite the important biological activities of natural product naphthoquinones, the biosynthetic pathways of and resistance mechanisms against such compounds remain poorly understood in fungi. Here, we report that the genes responsible for the biosynthesis of Monascus naphthoquinones (monasones) reside within the gene cluster for Monascus azaphilone pigments (MonAzPs). We elucidate the biosynthetic pathway of monasones by a combination of comparative genome analysis, gene knockouts, heterologous coexpression, and in vivo and in vitro enzymatic reactions to show that this pathway branches from the first polyketide intermediate of MonAzPs. Furthermore, we propose that the monasone subset of biosynthetic genes also encodes a two-tiered resistance strategy in which an inducible monasone-specific exporter expels monasones from the mycelia, while residual intracellular monasones may be rendered nontoxic through a multistep reduction cascade

    Monasone Naphthoquinone Biosynthesis and Resistance in Monascus Fungi

    No full text
    Despite the important biological activities of natural product naphthoquinones, the biosynthetic pathways of and resistance mechanisms against such compounds remain poorly understood in fungi. Here, we report that the genes responsible for the biosynthesis of Monascus naphthoquinones (monasones) reside within the gene cluster for Monascus azaphilone pigments (MonAzPs). We elucidate the biosynthetic pathway of monasones by a combination of comparative genome analysis, gene knockouts, heterologous coexpression, and in vivo and in vitro enzymatic reactions to show that this pathway branches from the first polyketide intermediate of MonAzPs. Furthermore, we propose that the monasone subset of biosynthetic genes also encodes a two-tiered resistance strategy in which an inducible monasone-specific exporter expels monasones from the mycelia, while residual intracellular monasones may be rendered nontoxic through a multistep reduction cascade.IMPORTANCE The genes for Monascus naphthoquinone (monasone) biosynthesis are embedded in and form a composite supercluster with the Monascus azaphilone pigment biosynthetic gene cluster. Early biosynthetic intermediates are shared by the two pathways. Some enzymes encoded by the supercluster play double duty in contributing to both pathways, while others are specific for one or the other pathway. The monasone subcluster is independently regulated and inducible by elicitation with competing microorganisms. This study illustrates genomic and biosynthetic parsimony in fungi and proposes a potential path for the evolution of the mosaic-like azaphilone-naphthoquinone supercluster. The monasone subcluster also encodes a two-tiered self-resistance mechanism that models resistance determinants that may transfer to target microorganisms or emerge in cancer cells in case of naphthoquinone-type cytotoxic agents.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Stand Characteristics Rather than Soil Properties Contribute More to the Expansion of Moso Bamboo (<i>Phyllostachys edulis</i>) into Its Neighboring Forests in Subtropical Region

    No full text
    Moso bamboo (Phyllostachys edulis), once highly praised worldwide, has been found to be a problematic species due to its unconstrained expansion into adjacent woodlands and negative effects on the function services of forest ecosystems. To determine the major factors affecting bamboo expansion into neighbor woodlands, we investigated the expansion characteristics of moso bamboo and the properties of stand structure and soil for 58 bamboo–woodland interfaces (BWIs) across Jiangxi province in China. Then, we analyzed the relationships between the variables of bamboo expansion and the properties of interfaces through a redundancy analysis. The characteristics (the expansion distance and the number and size of new culms) of moso bamboo expansion into disturbed forests were more significant (p < 0.01) than those into non-disturbed forests. The bamboo expansion into deciduous broad-leaved forest was much faster (1.33 m/yr) than evergreen broad-leaved forest (0.82 m/yr) and needle-leaved forest (1.08 m/yr). The characteristics of stand structure had more direct explanatory power (58.8%) than soil properties (4.3%) and their interaction (10.0%) for the variations in bamboo expansion. The canopy closure of recipient forests was identified as the most significant factor negatively correlated to bamboo expansion. The number of parent culms and the ratio of deciduous to evergreen trees ranked in sequence, and both imposed positive effects on the expansion. Regarding soil properties, only the water content was identified for its explanatory power and negative influence on bamboo expansion. Our findings illustrated that the expansion of moso bamboo showed remarkable variations when facing different woodlands. Stand characteristics (canopy closure, canopy height, etc.) of good explanatory power were the major variables affecting the expansion of moso bamboo. In order to control the expansion of bamboo and protect woodlands, disturbances (extracting timber, girdling trunks) should be prevented in bamboo–woodland interfaces

    Stand Characteristics Rather than Soil Properties Contribute More to the Expansion of Moso Bamboo (Phyllostachys edulis) into Its Neighboring Forests in Subtropical Region

    No full text
    Moso bamboo (Phyllostachys edulis), once highly praised worldwide, has been found to be a problematic species due to its unconstrained expansion into adjacent woodlands and negative effects on the function services of forest ecosystems. To determine the major factors affecting bamboo expansion into neighbor woodlands, we investigated the expansion characteristics of moso bamboo and the properties of stand structure and soil for 58 bamboo&ndash;woodland interfaces (BWIs) across Jiangxi province in China. Then, we analyzed the relationships between the variables of bamboo expansion and the properties of interfaces through a redundancy analysis. The characteristics (the expansion distance and the number and size of new culms) of moso bamboo expansion into disturbed forests were more significant (p &lt; 0.01) than those into non-disturbed forests. The bamboo expansion into deciduous broad-leaved forest was much faster (1.33 m/yr) than evergreen broad-leaved forest (0.82 m/yr) and needle-leaved forest (1.08 m/yr). The characteristics of stand structure had more direct explanatory power (58.8%) than soil properties (4.3%) and their interaction (10.0%) for the variations in bamboo expansion. The canopy closure of recipient forests was identified as the most significant factor negatively correlated to bamboo expansion. The number of parent culms and the ratio of deciduous to evergreen trees ranked in sequence, and both imposed positive effects on the expansion. Regarding soil properties, only the water content was identified for its explanatory power and negative influence on bamboo expansion. Our findings illustrated that the expansion of moso bamboo showed remarkable variations when facing different woodlands. Stand characteristics (canopy closure, canopy height, etc.) of good explanatory power were the major variables affecting the expansion of moso bamboo. In order to control the expansion of bamboo and protect woodlands, disturbances (extracting timber, girdling trunks) should be prevented in bamboo&ndash;woodland interfaces

    AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube guidance

    No full text
    Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier. A modified ovule targeting assay revealed that AtLURE1/PRK6-mediated signaling promotes micropylar guidance of Arabidopsis thaliana pollen tubes while discriminating tubes of related Arabidopsis lyrata
    corecore