73 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Potentiometric measurement of ascorbate by using a solvent polymeric membrane electrode

    No full text
    A novel potentiometric method for the determination of ascorbate is described in this communication. It is based on ascorbate oxidation with permanganate which is continuously released from the inner reference solution of a ligand-free tridodecylmethyl ammonium chloride (TDMAC)-based polymeric membrane ion selective electrode (ISE). The ISE potential determined by the activity of permanganate ions released at the sample-membrane phase boundary is increased with the consumption of permanganate. The proposed membrane electrode is useful for continuous and reversible detection of ascorbate at concentrations in 0.1 M NaCl ranging from 1.0 x 10(-6) to 1.0 x 10(-3) M with a detection limit of 2.2 x 10(-7) M. (C) 2007 Elsevier B.V. All rights reserved

    Musculoskeletal Ultrasonography Assessment of Functional Magnetic Stimulation on the Effect of Glenohumeral Subluxation in Acute Poststroke Hemiplegic Patients

    No full text
    Background. Glenohumeral subluxation (GHS) is common in patients with acute hemiplegia caused by stroke. GHS and upper limb function are closely related. Objective. Using musculoskeletal ultrasonography (MSUS) to objectively evaluate the efficacy of functional magnetic stimulation (FMS) in the treatment of GHS in acute hemiplegic patients after stroke. Methods. The study used prospective case control study. Stroke patients with GHS were recruited and assigned to control group and FMS group. Control group received electrode stimulation at the supraspinatus and deltoid muscles of the hemiplegic side, while FMS group was stimulated at the same locations. Before and after treatment, the distances of the acromion-greater tuberosity (AGT), acromion-lesser tuberosity (ALT), acromiohumeral distance (AHD), supraspinatus thickness (SST), and deltoid muscle thickness (DMT) in patients’ bilateral shoulder joint were measured by MSUS, respectively. Meanwhile, Fugl-Meyer Assessment (FMA) was used to evaluate the improvement of upper limb function. Results. 30 patients were recruited. After FMS treatment, there was a significant decrease in the difference value between ipsilateral side and contralateral side of AGT [t=8.595, P<0.01], ALT [t=11.435, P<0.01], AHD [t=8.375, P<0.01], SST [t=15.394, P<0.01], and DMT [t=24.935, P<0.01], and FMA score increased [t=-13.315, P<0.01]. Compared with control group, FMS group decreased more significantly in the difference value between ipsilateral side and contralateral side of AGT [t=2.161, P<0.05], ALT [t=3.332, P<0.01], AHD [t=8.768, P<0.01], SST [t=6.244, P<0.01], and the DMT [t=3.238, P<0.01], and FMA score increased more significantly in FMS group [t=7.194, P<0.01]. Conclusion. The study preliminarily shows that the MSUS can objectively and dynamically evaluate the treatment effect of GHS in hemiplegic patients. Meanwhile, compared with control group, the FMS is more effective and has fewer side effects, and the long-term effect of FMS is worth further study. This trial is registered with ChiCTR1800015352

    Internal Combustion Engine Fault Identification Based on FBG Vibration Sensor and Support Vector Machines Algorithm

    No full text
    State monitoring and fault diagnosis of an internal combustion engine are critical for complex machinery safety. In the present study, a high-frequency vibration system was proposed based on Fiber Bragg Grating (FBG) cantilever sensor and intelligent algorithm. Structural vibration signal containing fault information of engine valves and oil nozzle was identified by FBG sensors and preprocessed using wavelet decomposition and reconstruction. Moreover, vibration energy was taken as fault characteristics. Subsequently, a fault identification model was built based on multiclass Ï…-support vector classification (Ï…-SVC). Experimental tests on the valve fault and fuel injection advance angle fault were performed and presented to verify the efficacy of the proposed approach. The results here reveal that the proposed method exhibits excellent fault detection performance for ICE fault identification. Furthermore, the proposed method can achieve higher performance than other methods in the fault identification accuracy

    Novel Applications of Silk Proteins Based on Their Interactions with Metal Ions

    No full text
    Silk secreted by Bombyx mori L. silkworm has become one of the most important biomaterials, due to its excellent biocompatibility, controllable biodegradability, superior processability, and unique mechanical properties. Silk fibroin and sericin, as the two components of silk, contain abundant polar functional groups, and thus can bind metal ions through electrostatic interaction and chelation. Based on this binding, silk proteins not only can be used to fabricate ecofriendly and efficient adsorbents to remove heavy metals from waterbodies, but also can synthesize metal nanostructures (nanoparticles or nanoclusters) to form silk/metal composites with amazing optical or electrochemical characteristics. This binding also can be manipulated to optimize silk’s performance. This review focuses on discussing and summarizing advances in the use of silk fibroin and sericin for heavy metal ion-contaminated water remediation, biosensing materials, and electrochemical materials from the perspective of the interaction between silk proteins and metal ions. The performance enhancement of silk using metal ions is also analyzed. Moreover, the silk proteins’ interactions with metal ions and related structural features that contribute to the above sustainable applications are illustrated to lay a theoretical foundation. This review will favor the expansion of the applications of silk in both the traditional textile field and new biomaterials
    • …
    corecore