29 research outputs found

    Image recognition system based on convolutional neural network

    Get PDF
    In recent years, image recognition technology has been widely used in civil, military, scientific research and other fields. Convolutional neural network has the advantages of automatic feature extraction, hierarchical structure, spatial invariance and powerful expression ability. In this paper, we take dog and cat image recognition as an example, and construct a seven-layer convolutional network to achieve the recognition and classification of dog and cat images

    Monocular 3D reconstruction on low-cost equipment in real time

    Get PDF
    In recent years, 3D reconstruction has been widely used in various fields. However, highquality data acquisition equipment is expensive in these application fields. This paper proposes a 3D reconstruction solution on the basis of low-cost equipment, which uses low-cost monocular camera to collect a series of images of real-world scenarios, thereby reconstructing the real-world scenarios (3D model of the scenes) in real time

    A novel lithium battery anode-cathode distance detection method based on X-RAY images

    Get PDF
    Lithium battery is a promising energy source that can used in power the electric motors of a battery electric vehicle or hybrid electric vehicle. However, in recent years, many serious safety accidents in electric vehicle that caused by the defect of the anode and cathode harm the industry. Therefore, we proposed a novel distance detection method, which can detect the defect of the anode and cathode automatically with high accuracy and speed

    ΠžΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ СстСствСнно-языкового интСрфСйса

    No full text
    Natural language interfaces are oriented towards achievement of interaction between human users and computer systems in the most natural way. In the process of artificial intelligence development, natural language interface has always been the main research direction. The paper is dedicated to the description of the ontological approach to the development of the natural language interface for intelligent computer system (mainly knowledge-based system) based on the OSTIS Technology. In the field of the development of natural language interface the existing approaches to solve the natural language texts processing (natural language texts analysis and natural language texts generation) are considered. Moreover, the ontological model that possibly integrate different kinds of linguistic knowledge in detail and various problem solving models oriented on solving natural language texts processing in a semantically compatible are described

    ΠžΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ китайско-языкового интСрфСйса Π² ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… систСмах

    No full text
    This article is devoted to development of a unified semantic model of natural language interface, which allows combine various linguistic knowledge on natural language processing into a single knowledge base, as well as deep integration of logical models on rules, neural network models and other problem solving models for natural language processing towards solving conversion natural language texts into knowledge base fragments and generation natural language texts from knowledge base fragments. Moreover main principles of building Chinese language interface is described on the basis of unified model of natural language interface. Finally the developed Chinese language interface is evaluated in order to prove the effectiveness of unified semantic model

    Ontological approach to Chinese text processing

    Get PDF
    Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ СстСствСнно-языкового ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠ³ΠΎ интСрфСйса ΠΈ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° вопросы Π½Π° основС Π·Π½Π°Π½ΠΈΠΉ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ прСдлагаСтся модСль ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ китайского языка, основанная Π½Π° знаниях. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ СстСствСнного языка ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ, связанныС с ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ СстСствСнного языка. На основС Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π±Ρ‹Π» сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ СстСствСнного языка Π±Π°Π·Π° Π·Π½Π°Π½ΠΈΠΉ являСтся самой основной ΠΈ Π²Π°ΠΆΠ½ΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ. Π‘Π°Π·Π° Π·Π½Π°Π½ΠΈΠΉ позволяСт ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ СстСствСнного языка, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ описанных знаниях, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ процСсс ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. На основании Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² построСния Π±Π°Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ± английском ΠΈ китайском языках Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ онтологичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ китайского языка. Π’ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ китайского языка ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π²Π° основных аспСкта исслСдования: построСниС Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΎ китайском языкС ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅ΡˆΠ°Ρ‚Π΅Π»Ρ Π·Π°Π΄Π°Ρ‡ Π½Π° основС ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ сСмантичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎ китайском языкС. Как ΠΎΠ΄ΠΈΠ½ ΠΈΠ· этапов Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π±Ρ‹Π»Π° построСна онтология китайского языка, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² дальнСйшСм для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ китайского языка. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны пСрвая вСрсия ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ построСния Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΎ китайском языкС. Для построСния ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ этапС Π½Π΅Ρ‚ Π΅Π΄ΠΈΠ½Ρ‹Ρ… стандартов ΠΈ систСмы ΠΎΡ†Π΅Π½ΠΊΠΈ. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° Π΅Π΅ качСства Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований.To implement natural language user interface and an intelligent answer to questions, the knowledgebased semantic model for Chinese language processing is proposed. The article gives careful consideration to the existing methods and various knowledge bases for natural language processing. The analysis of these methods has led to the conclusion that in natural language processing, the knowledge base is the most fundamental and crucial part. The knowledge base makes it possible to ensure processing of a natural language based on initially described knowledge and to explain the processing operations. By virtue of the analysis of various methods for constructing knowledge bases about the English and Chinese languages, an ontological approach to the Chinese language processing was proposed. The Chinese language processing model has two main aspects: the design of knowledge base about the Chinese language and the development of ontology-based knowledge processing machine. The proposed approach is aimed at developing a semantic model of knowledge on the Chinese language. As a stage in the implementation of the approach, I designed the ontology of the Chinese language that can be applied for further processing of the language. This paper considers the preliminary version of the ontology and the principle of building a knowledge base about the Chinese language. There are no uniform standards and evaluation system for designing an ontology. Expansion, refinement and evaluation of the ontology require further research

    ΠžΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΡŽ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· тСкстов СстСствСнного языка

    No full text
    The main task of knowledge acquisition (also named knowledge extraction) from natural language texts is to extract knowledge from natural language texts into fragment of knowledge base of intelligent system. Through the induction of the related literature about knowledge acquisition at a home country and abroad, this paper analyses the strengths and weaknesses of the classical approach. After emphatically researching the rulebased knowledge extraction technology and the method of building ontology of linguistics, this article proposes a solution to the implementation of knowledge acquisition based on the OSTIS technology. The main feature of this solution is to construct a unified semantic model that is able to utilize ontologies of linguistics (mainly, syntactic and semantic aspect) and integrate various problem-solving models (e. g., rule-based models, neural network models) for solving knowledge extraction process from natural language texts.Главная Π·Π°Π΄Π°Ρ‡Π° приобрСтСния Π·Π½Π°Π½ΠΈΠΉ (Ρ‚Π°ΠΊΠΆΠ΅ называСмая ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π·Π½Π°Π½ΠΈΠΉ) ΠΈΠ· тСкстов СстСствСнного языка – это ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· тСкстов СстСствСнного языка Π² Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ознакомлСния с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ ΠΎ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ Π² странС ΠΈ Π·Π° Ρ€ΡƒΠ±Π΅ΠΆΠΎΠΌ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ прСимущСства ΠΈ нСдостатки классичСского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π·Π½Π°Π½ΠΈΠΉ. ПослС Ρ‚Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ извлСчСния Π·Π½Π°Π½ΠΈΠΉ Π½Π° основС ΠΏΡ€Π°Π²ΠΈΠ» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² построСния ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΉ лингвистики ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ извлСчСния Π·Π½Π°Π½ΠΈΠΉ Π½Π° основС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ OSTIS. Основной ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ этого Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ являСтся построСниС Π΅Π΄ΠΈΠ½ΠΎΠΉ сСмантичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ, которая ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ лингвистики (Π² основном синтаксичСский ΠΈ сСмантичСский аспСкты) ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° основС ΠΏΡ€Π°Π²ΠΈΠ», ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй) для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ извлСчСния Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· тСкстов СстСствСнного языка

    Implementation principles of knowledge acquisition for intelligent system

    No full text
    The article is dedicated to ontology-based implementation on principles in component development of natural language interface, which is able to extract specific construction represented in internal language of intelligent system from unstructured data

    ΠžΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка ΠΈΠ· Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ

    No full text
    The computer systems are expert in dealing with structured data. However, when computer systems attempt to impart information to the end-users, generating natural language text that expresses structured data is a significant challenge. Currently graphical knowledge representations as a kind of forms to represent structured data are gradually becoming universal in computing. In this paper, we present a unified semantic model for generating fluent, multi-sentence, appropriate natural language text (e.g., Chinese language text) from knowledge base to the end-users. This article describes the development of semantic model for natural language generation, and the optional linguistic ontologies which may be used in the processing of generation. The main novelty is that it is possible to integrate different approaches and linguistic knowledge to generate natural language text from the structured data of the computer systems represented in graph form. For the ordinary end-users it will be an easier access to the information in the computer systems. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ СстСствСнно-языкового интСрфСйса, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΉ СстСствСнного языка ΠΈΠ· Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ СстСствСнно- языкового интСрфСйса. Π‘Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка ΠΈΠ· структурированных Π΄Π°Π½Π½Ρ‹Ρ… (Π² частности Π±Π°Π·Π° Π·Π½Π°Π½ΠΈΠΉ) Π² настоящСС врСмя. На основании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рассмотрСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ онтологичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ тСксты СстСствСнного языка. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ сСмантичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎ лингвистикС. Π­Ρ‚Π°ΠΏΡ‹ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π±Ρ‹Π»ΠΈ созданы лингвистичСскиС ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Ρ€Π΅ΡˆΠ°Ρ‚Π΅Π»ΠΈ для Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка. ЛингвистичСскиС ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ синтаксичСскиС ΠΈ сСмантичСскиС знания ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ языка, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ°Ρ‚Π΅Π»ΡΠΌΠΈ для Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, для дальнСйшСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ части СстСствСнно-языкового ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠ³ΠΎ интСрфСйса Π² Ρ€Π°Π±ΠΎΡ‚Π΅ прСдлагаСтся модСль Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ СстСствСнного языка ΠΈΠ· Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°, основанная Π½Π° знаниях. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, Π² качСствС китайского языка, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹Ρ… этапов Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ лингвистичСских ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² процСссС Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ

    An approach to calculating the similarity between semantic segments in the intelligent tutoring systems

    No full text
    This article proposes an approach to develop a sc-agent for calculating the similarity between semantic fragments described based on factual knowledge in the intelligent tutoring systems
    corecore