29 research outputs found
Image recognition system based on convolutional neural network
In recent years, image recognition technology has been widely used in civil, military, scientific research and other fields. Convolutional neural network has the advantages of automatic feature extraction, hierarchical structure, spatial invariance and powerful expression ability. In this paper, we take dog and cat image recognition as an example, and construct a seven-layer convolutional network to achieve the recognition and classification of dog and cat images
Monocular 3D reconstruction on low-cost equipment in real time
In recent years, 3D reconstruction has been widely used in various fields. However, highquality data acquisition equipment is expensive in these application fields. This paper proposes a 3D reconstruction solution on the basis of low-cost equipment, which uses low-cost monocular camera to collect a series of images of real-world scenarios, thereby reconstructing the real-world scenarios (3D model of the scenes) in real time
A novel lithium battery anode-cathode distance detection method based on X-RAY images
Lithium battery is a promising energy source that can used in power the electric motors of a battery electric vehicle or hybrid electric vehicle. However, in recent years, many serious safety accidents in electric vehicle that caused by the defect of the anode and cathode harm the industry. Therefore, we proposed a novel distance detection method, which can detect the defect of the anode and cathode automatically with high accuracy and speed
ΠΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ-ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ°
Natural language interfaces are oriented towards achievement of interaction between human users and
computer systems in the most natural way. In the process of artificial intelligence development, natural language interface has always been the main research direction. The paper is dedicated to the description of the ontological approach to the development of the natural language interface for intelligent computer system (mainly knowledge-based system) based on the OSTIS Technology. In the field of the development of natural language interface the existing approaches to solve the natural language texts processing (natural language texts analysis and natural language texts generation) are considered. Moreover, the ontological model
that possibly integrate different kinds of linguistic knowledge in detail and various problem solving models oriented on solving natural language texts processing in a semantically compatible are described
ΠΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎ-ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ° Π² ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
This article is devoted to development of a unified semantic model of natural language interface, which allows combine various linguistic knowledge on natural language processing into a single knowledge base, as well as deep integration of logical models on rules, neural network models and other problem solving models for natural language processing towards solving conversion natural language texts into knowledge base fragments and generation natural language texts from knowledge base fragments. Moreover main principles of building Chinese language interface is described on the basis of unified model of natural language interface. Finally the developed Chinese language interface is evaluated in order to prove the effectiveness of unified semantic model
Ontological approach to Chinese text processing
ΠΠ»Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ-ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ° ΠΈ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° Π²ΠΎΠΏΡΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π·Π½Π°Π½ΠΈΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° Π·Π½Π°Π½ΠΈΡΡ
. Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΎΠΉ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π±ΡΠ» ΡΠ΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° Π±Π°Π·Π° Π·Π½Π°Π½ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΌΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ. ΠΠ°Π·Π° Π·Π½Π°Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΡ
Π·Π½Π°Π½ΠΈΡΡ
, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π±Π°Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ± Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠΌ ΠΈ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ°Ρ
Π±ΡΠ» ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. Π ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π°ΡΠΏΠ΅ΠΊΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠ΅ΡΠ°ΡΠ΅Π»Ρ Π·Π°Π΄Π°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π½Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΡ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅. ΠΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΡΠ°ΠΏΠΎΠ² ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π±ΡΠ»Π° ΠΏΠΎΡΡΡΠΎΠ΅Π½Π° ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π΄Π»Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΠ΅ΡΠ²Π°Ρ Π²Π΅ΡΡΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ Π½Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ² ΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ΅Π½ΠΊΠΈ. Π Π°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΎΡΠ΅Π½ΠΊΠ° Π΅Π΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΡΠ΅Π±ΡΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ.To implement natural language user interface and an intelligent answer to questions, the knowledgebased semantic model for Chinese language processing is proposed. The article gives careful consideration to the existing methods and various knowledge bases for natural language processing. The analysis of these methods has led to the conclusion that in natural language processing, the knowledge base is the most fundamental and crucial part. The knowledge base makes it possible to ensure processing of a natural language based on initially described knowledge and to explain the processing operations. By virtue of the analysis of various methods for constructing knowledge bases about the English and Chinese languages, an ontological approach to the Chinese language processing was proposed. The Chinese language processing model has two main aspects: the design of knowledge base about the Chinese language and the development of ontology-based knowledge processing machine. The proposed approach is aimed at developing a semantic model of knowledge on the Chinese language. As a stage in the implementation of the approach, I designed the ontology of the Chinese language that can be applied for further processing of the language. This paper considers the preliminary version of the ontology and the principle of building a knowledge base about the Chinese language. There are no uniform standards and evaluation system for designing an ontology. Expansion, refinement and evaluation of the ontology require further research
ΠΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ΅ΠΊΡΡΠΎΠ² Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°
The main task of knowledge acquisition (also named knowledge extraction) from natural language texts is to extract knowledge from natural language texts into fragment of knowledge base of intelligent system. Through the induction of the related literature about knowledge acquisition at a home country and abroad, this paper analyses the strengths and weaknesses of the classical approach. After emphatically researching the rulebased knowledge extraction technology and the method of building ontology of linguistics, this article proposes a solution to the implementation of knowledge acquisition based on the OSTIS technology. The main feature of this solution is to construct a unified semantic model that is able to utilize ontologies of linguistics (mainly, syntactic and semantic aspect) and integrate various problem-solving models (e. g., rule-based models, neural network models) for solving knowledge extraction process from natural language texts.ΠΠ»Π°Π²Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ (ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠ°Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π·Π½Π°Π½ΠΈΠΉ) ΠΈΠ· ΡΠ΅ΠΊΡΡΠΎΠ² Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° β ΡΡΠΎ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ΅ΠΊΡΡΠΎΠ² Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° Π² ΡΡΠ°Π³ΠΌΠ΅Π½Ρ Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. Π‘ ΡΡΠ΅ΡΠΎΠΌ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠΎΠΉ ΠΎ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ Π² ΡΡΡΠ°Π½Π΅ ΠΈ Π·Π° ΡΡΠ±Π΅ΠΆΠΎΠΌ Π² ΡΡΠ°ΡΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡΡΡΡ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ. ΠΠΎΡΠ»Π΅ ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠ°Π²ΠΈΠ» ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΠΊΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ OSTIS. ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΠΊΠΈ (Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΈΠ½ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΡΠΏΠ΅ΠΊΡΡ) ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠ°Π²ΠΈΠ», ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡΠΎΠ½Π½ΡΡ
ΡΠ΅ΡΠ΅ΠΉ) Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ΅ΠΊΡΡΠΎΠ² Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°
Implementation principles of knowledge acquisition for intelligent system
The article is dedicated to ontology-based implementation on principles in component development of natural language interface, which is able to extract specific construction represented in internal language of intelligent system from unstructured data
ΠΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈΠ· Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ
The computer systems are expert in dealing with structured data. However, when computer systems attempt to impart information to the end-users, generating natural language text that expresses structured data is a signiο¬cant challenge. Currently graphical knowledge representations as a kind of forms to represent structured data are gradually becoming universal in computing. In this paper, we present a uniο¬ed semantic model for generating ο¬uent, multi-sentence, appropriate natural language text (e.g., Chinese language text) from knowledge base to the end-users. This article describes the development of semantic model for natural language generation, and the optional linguistic ontologies which may be used in the processing of generation. The main novelty is that it is possible to integrate different approaches and linguistic knowledge to generate natural language text from the structured data of the computer systems represented in graph form. For the ordinary end-users it will be an easier access to the information in the computer systems. Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ-ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΊ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΉ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈΠ· Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ- ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ°. ΠΡΠ» ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌ,
Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ
ΠΏΡΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈΠ· ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
(Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π±Π°Π·Π° Π·Π½Π°Π½ΠΈΠΉ) Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π±ΡΠ» ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π·Π½ΡΠ΅ ΡΠΈΠΏΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅ΠΊΡΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π½Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΡ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΠΊΠ΅. ΠΡΠ°ΠΏΡ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π±ΡΠ»ΠΈ ΡΠΎΠ·Π΄Π°Π½Ρ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΡΠ΅ΡΠ°ΡΠ΅Π»ΠΈ Π΄Π»Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. ΠΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΡΡΠ°ΠΆΠ°Π΅Ρ ΡΠΈΠ½ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π½Π°Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠΌΠΈ Π΄Π»Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°ΡΡΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ-ΡΠ·ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ° Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈΠ· Π±Π°Π·Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° Π·Π½Π°Π½ΠΈΡΡ
. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΈΡΠ°ΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ°, ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΡΡ
ΡΡΠ°ΠΏΠΎΠ² Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΈ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΏΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ
An approach to calculating the similarity between semantic segments in the intelligent tutoring systems
This article proposes an approach to develop a sc-agent for calculating the similarity between semantic fragments described based on factual knowledge in the intelligent tutoring systems