3,413 research outputs found

    Dynamical topology and statistical properties of spatiotemporal chaos

    Full text link
    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In despite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.Comment: 6 pages, 5 figure

    Attraction of Spiral Waves by Localized Inhomogeneities with Small-World Connections in Excitable Media

    Full text link
    Trapping and un-trapping of spiral tips in a two-dimensional homogeneous excitable medium with local small-world connections is studied by numerical simulation. In a homogeneous medium which can be simulated with a lattice of regular neighborhood connections, the spiral wave is in the meandering regime. When changing the topology of a small region from regular connections to small-world connections, the tip of a spiral waves is attracted by the small-world region, where the average path length declines with the introduction of long distant connections. The "trapped" phenomenon also occurs in regular lattices where the diffusion coefficient of the small region is increased. The above results can be explained by the eikonal equation and the relation between core radius and diffusion coefficient.Comment: 5 pages, 4 figure

    Robustness and modular design of the Drosophila segment polarity network

    Get PDF
    Biomolecular networks have to perform their functions robustly. A robust function may have preferences in the topological structures of the underlying network. We carried out an exhaustive computational analysis on network topologies in relation to a patterning function in Drosophila embryogenesis. We found that while the vast majority of topologies can either not perform the required function or only do so very fragilely, a small fraction of topologies emerges as particularly robust for the function. The topology adopted by Drosophila, that of the segment polarity network, is a top ranking one among all topologies with no direct autoregulation. Furthermore, we found that all robust topologies are modular--each being a combination of three kinds of modules. These modules can be traced back to three sub-functions of the patterning function and their combinations provide a combinatorial variability for the robust topologies. Our results suggest that the requirement of functional robustness drastically reduces the choices of viable topology to a limited set of modular combinations among which nature optimizes its choice under evolutionary and other biological constraints.Comment: Supplementary Information and Synopsis available at http://www.ucsf.edu/tanglab

    Dynamic Studies of Scaffold-dependent Mating Pathway in Yeast

    Get PDF
    The mating pathway in \emph{Saccharomyces cerevisiae} is one of the best understood signal transduction pathways in eukaryotes. It transmits the mating signal from plasma membrane into the nucleus through the G-protein coupled receptor and the mitogen-activated protein kinase (MAPK) cascade. According to the current understandings of the mating pathway, we construct a system of ordinary differential equations to describe the process. Our model is consistent with a wide range of experiments, indicating that it captures some main characteristics of the signal transduction along the pathway. Investigation with the model reveals that the shuttling of the scaffold protein and the dephosphorylation of kinases involved in the MAPK cascade cooperate to regulate the response upon pheromone induction and to help preserving the fidelity of the mating signaling. We explored factors affecting the dose-response curves of this pathway and found that both negative feedback and concentrations of the proteins involved in the MAPK cascade play crucial role. Contrary to some other MAPK systems where signaling sensitivity is being amplified successively along the cascade, here the mating signal is transmitted through the cascade in an almost linear fashion.Comment: 36 pages, 9 figure
    corecore